• 제목/요약/키워드: SM20C

검색결과 161건 처리시간 0.022초

바이트 인선각의 변화에 따른 절삭성의 최적화 방안에 관한 연구 (A study on optimum of cutting ability with change of tool rake angles)

  • 염성하;오재응;현청남
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1043-1054
    • /
    • 1988
  • 본 연구에서는 공구(bite)의 형상에서 상면경사각을 변화시켜 이에 따른 절삭 저항의 3분력을 측정하여 그 값에 대한 합력과 비절삭저항 그리고 거칠기 등 3값을 normalization 과정으로 energy method에 의하여 이들 SM20C 및 SM45C 재료를 구분하 여 각각의 절삭저항과 그 특성을 규명하고져 하였으며 아울러 재료별 최적조건을 찾고 자 한다.

경량화 쇽업소바 피스톤로드에 사용되는 SM45C/SM20C-Pipe의 마찰용접에 관한 연구 (A Study on the Friction Welding of SM45C/SM20C-Pipe which Used in the Light Piston-Rod)

  • 민병훈;최수현;강정식;이형호;민택기
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.42-50
    • /
    • 2008
  • Various researches to reduce weight of a vehicle are achieving. One of these researches is tendencious to manufacture the hollow piston rod using friction welding instead of solid one of the vehicle shock absorber. This study deals with the friction welding of SM45C to SM20C-pipe that is used normally in the vehicle shock absorber. The friction time was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, upset pressure of 75MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests of friction weld were studied and so the results were as follows. When the friction time was l.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 837MPa, which is 113% of SM20C's tensile strength and 97% of SM45C's. The optimal welding conditions were n=2,000rpm, $P_1=55MPa$, $P_2=75MPa$, $t_1=1.5sec$, $t_2=2.0sec$ when the total upset length is 1.7mm.

Phase Relationships and Magnetic Properties of HDDR-treated $Sm_3$(Fe,Co,V)$_{29}$ Alloy

  • Kwon, Hae-Woong
    • Journal of Magnetics
    • /
    • 제6권4호
    • /
    • pp.122-125
    • /
    • 2001
  • Phase relationships of the HDDR (hydrogenation, disproportionation, desorption and recombination)-treated Sm$_3$(Fe,M)$_{29}$-type alloy with chemical composition of Sm$_{9}$Fe$_{65}$ $Co_{20}$V$_{6}$ were studied by X-ray diffraction (XRD) and by thermomagnetic analysis (TMA). The alloy was disproportionated into a mixture of $SmH_{x}$ and $\alpha$-Fe at high temperature under hydrogen gas. The disproportionated material was recombined into a mixture of Sm-(Fe,M) (M = Co and/or V) and $\alpha$-Fe phases. The structure of the Sm-(Fe,M) phase was dependent upon the recombination conditions, and a detailed phase diagram showing the phase relationships in the HDDR-treated alloy has been established. The Sm-(Fe,M) phase in material recombined above $900^{\circ}C$ had the $Sm_2Fe_{17}$-type structure, and it exhibited the $SmFe_{7}$-type structure when recombined at temperatures ranging from $700^{\circ}C$ to $850^{\circ}C$. Recombination below $650^{\circ}C$ led to the $SmFe_3$-type structure of the Sm-(Fe,M) phase. Curie temperatures of the Sm-(Fe,M) phases in the recombined material were significantly higher than those of the corresponding stoichiometric phases. It was suggested that the chemical composition of the Sm-(Fe,M) phases may be significantly different from that of the corresponding stoichiometric phases. All the HDDR-treated $Sm_{9}Fe_{65}Co_{20}V_{6}$ materials showed the soft magnetic features regardless of the phase constitution.n.

  • PDF

힌지재료의 찰과마멸부식에 미치는 부식환경의 영향( I ) (Effect of Corrosion Environment on the Fretting Wear Corrosion of a Hinge Material( I ))

  • 곽남인;임우조;이종락
    • 한국가스학회지
    • /
    • 제4권1호
    • /
    • pp.26-32
    • /
    • 2000
  • 본 연구에서는 힌지재인 SM20C, YBsC3 및 STC4H재에 대하여 공기 및 여러 가지 부식환경중에서 이종금속간의 찰과마멸부식실험을 실시하여, 이종금속간의 찰과마멸부식특성에 미치는 환경조건의 영향을 연구하였으며, 주요 결론은 다음과 같다. 1) 이동측 금속인 SM20C의 찰과마멸부식에 미치는 지하수의 영향은 STC4H에서 더 민감하고 YBsC3에서는 둔화된다. 2) STC4H의 찰과마멸부식에 미치는 지하수의 영향은 작지만, $0.5\%\;H_2SO_4$$0.5\%HNO_3$ 용액중에서 더 크게 된다. 3) 이동측 SM20C의 찰과마멸부식은 $3.5\%\;NaCl$, $0.5\%\;H_2SO_4$$0.5\%\;HNO_3$ 용액중에서보다 지하수중에서 가장 작게 나타났다. 4) 시간이 경과함에 따라 찰과마멸부식에 미치는 영향은 $0.5\%\;HNO_3$ 용액중에서는 증가하지 $0.5\%\;H_2SO_4$ 용액중에서는 둔화된다.

  • PDF

기계구조용 탄소강(SM20C)의 단속절삭시 칩의 형상 및 공구손상관찰 (Observation of Chip Shape and Tool Damage with Interrupted Cutting of Carbon Steel for Machine Structures(SM20C))

  • 배명일
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.103-108
    • /
    • 2018
  • In interrupted cutting, the workpiece has a groove that impacts both the cutting tool and the workpiece. Therefore, cutting tool damage occurs rapidly. In this study, I performed interrupted cutting of carbon steel for machine structures (SM20C) using an uncoated carbide tool (SNMG120404, P20), and observed tool damage, cutting chip shape, and the workpiece surface. Results: Under the specific cutting conditions of feed rate = 0.066 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.1 mm; and feed rate = 0.105 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.2 mm, the observed tool damage was small. Similar chip shape was observed (Expt. No. 1, 3, 7). Workpiece damage was observed (Expt. No. 3, 5, 7, 9).

선삭에서 기계구조용 탄소강의 가공시 절삭저항과 표면거칠기에 미치는 영향에 관한 연구 (A Study on the Effects of Cutting Resistance and Surface Roughness of the Machine Structure Carbon Steel in Turning)

  • 이건준
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.47-53
    • /
    • 1999
  • The purpose of this study was to determine the effects of various cutting condition on the cutting resistance and surface roughness of material in turning operation using a coated carbide tool. The workpiece materials were the carbon steel SM20C and SM45C The results of this study are summarized as follows: The cutting force decreases as the feedee amount and the cutting depth decrease and the cutting speed increases. In order to obtain a proper surface roughness to each material it is desirable to set the feeding amount as 0.059mm.rev, the cutting depth as 0.4mm and the cutting speed as 270m/min for SM20C, while setting the feeding as 0.059mm/rev the cutting depth as 0.6mm and the cutting speed as 270m/min for SM45C.

  • PDF

선삭가공에서 절삭지향과 표면거칠기에 미치는 영향에 관한 연구 (A Study on the Effects of Cutting Resistance and Surface Roughness in Turning)

  • 신근하
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.235-242
    • /
    • 1997
  • The purpose of this study was to determine the effects of various cutting conditions on the cutting resistance and surface roughness of material in turning operation using a carbide tool. The workpiece materials were the carbon steel SM20C and SM45C. The results of this study are summarized as follows: The cutting force decreases as the feeding amount and cutting depth decrease and the cutting speed increases. In order to obtain a proper surface roughness to each material, it is desirable to set the feeding amount as 0.059mm/rev, the cutting depth as 0.4mm and the cutting speed as 270m/min for SM20C, while setting the feeding as 0.059mm/rev, the cutting depth as 0.6mm and the cutting speed as 270m/min for SM45C.

  • PDF

SM20C 마찰용접부(摩擦鎔接部)의 노치 깊이에 따른 기계적(機械的) 성질(性質) 연구(硏究) (A Study on Mechanical Properties According to the Depth of Notch in SM20C Friction Welding Zone)

  • 이세경;정준모;박천봉;민택기
    • 한국공작기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2007
  • The present study examined the mechanical properties of the friction welding zone of solid and hollow shafts made with SM20C according to the depth of the notch. Friction welding was conducted at welding conditions of 2,000 rpm, friction pressure of 60MPa, friction time of 1.4 seconds, upset pressure of 100MPa, and upset time of 2.0 seconds. In the tensile strength test, the tensile strength decreased as the depth of the notch increased. Tensile strength was moderately high when the depth of the notch was 2mm. The tensile strength of the welding zone increased as the friction revolution radius increased, because the latter led to the generation of adequate friction heat. According to the hardness test, hardness likewise increased as e friction revolution radius increased. In the bending test, the bend strength of the solid shaft decreased when the depth of the notch was 0-2mm but increased when the latter was 3-5mm. With regard to the hollow shaft, the bend strength drastically decreased when the depth of the notch was 3-4mm. Upon examination it was found that the microstructure became finer when the friction revolution radius increased.