• 제목/요약/키워드: SM Model

검색결과 246건 처리시간 0.028초

SM490 TMC 강재의 반복소성모델의 정식화 및 유한요소해석 (Formulation of Cyclic Plasticity Model and FE Analysis for SM490 TMC)

  • 장갑철;장경호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.84-89
    • /
    • 2004
  • In this paper, cyclic plasticity model of SM490 TMC was formulated by basing on monotonic loading test and cyclic loading test. For exact description of cyclic performance and plastic deformation capacity of steel member using SM490 TMC, formulated cyclic plasticity model and finite deformation theory were applied to 3-dimensional elastic-plastic FE analysis. Cyclic plastic behavior of pipe-section steel column using SM490 TMC was clarified by carrying out numerical analysis. Also, in order to clarifying seismic performance of pipe-section steel column using SM490 TMC, analysis results were compared with analysis results of pipe-section steel column using SM490. A comparison of analysis results shows that SM490 TMC pipe-section steel column has a better cyclic performance for strength and energy dissipation than SM490 pipe-section steel column under cyclic loading

  • PDF

SM490-TMC 강재를 적용한 기둥부재 이력거동의 특성 (Hysteretic Behavior Characteristics of SM490-TMC Steel Column)

  • 장경호;장갑철
    • 대한토목학회논문집
    • /
    • 제26권5A호
    • /
    • pp.833-840
    • /
    • 2006
  • TMCP 강재를 적용한 기둥부재의 정확한 내진설계를 위해서는 반복하중 작용시 기둥부재에 발생하는 이력거동의 특성을 명확히 파악해야 한다. 이러한 이력거동을 정확히 예측하기 위해서는 반복하중 작용시 TMCP 강재의 역학적 특성 및 응력-변형률 관계를 구현할 수 있는 반복소성모델이 필요하다. 본 연구에서는 먼저 단조 및 반복하중실험에 기초하여 SM490 및 SM490-TMC 강재의 반복소성모델을 정식화하였으며 이를 3차원 탄소성 유한요소해석에 적용하였다. 수치해석을 통하여 SM490-TMC 강재를 적용한 원형과 H형 기둥부재의 이력거동의 특성을 파악하였다. 또한 해석결과를 SM490강재가 적용된 기둥부재의 해석결과와 비교하여 SM490-TMC 강재가 원형 및 H형 기둥부재의 이력거동에 미치는 영향을 명확히 하였다.

SM570강재의 반복소성모델의 정식화 및 3차원 탄소성 유한요소적용에 관한 연구 (A Study on Generalization of Cyclic Plasticity Model and Application of 3-Dimensional Elastic-Plastic FEM of SM570)

  • 장경호;장갑철;이은택
    • 한국지진공학회논문집
    • /
    • 제8권1호
    • /
    • pp.59-65
    • /
    • 2004
  • 최근 강구조물의 고층화 및 장경간화로 인하여 SM570강재와 같은 고강도 강재의 적용을 필요로 하고 있다. 강구조물의 정확한 내진설계를 위한 내진구조해석시 비선형 반복하중을 받는 강재의 특성을 명확히 포현할 수 있는 구성식이 필요하다. SM570는 최근 그 사용이 증가하고 있으나 아직 반복소성거동의 구현 및 정식화에 관한 연구는 아직 미진하다. 본 연구에서는 인장 및 저싸이클 피로 실험을 통하여 SM570 강재의 반복소성모델을 제안하였다. 제안된 반복소성모델을 3차원 유한요소에 적용하여 SM570이 사용된 원형 강교각의 내진해석을 수행하였다. 실험결과와 내진해석을 통하여 본 연구에서 제안한 구성식은 SM570이 사용된 강구조물의 복잡한 소성거동을 정도 높게 구현함을 알 수 있었다.

Kinetic Study of the Anaerobic Digestion of Swine Manure at Mesophilic Temperature: A Lab Scale Batch Operation

  • Kafle, Gopi Krishna;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • 제37권4호
    • /
    • pp.233-244
    • /
    • 2012
  • Purpose: The kinetic evaluation was performed for swine manure (SM) degradation and biogas generation. Methods: The SM was anaerobically digested using batch digesters at feed to inoculum ratio (F/I) of 1.0 under mesophilic conditions ($36.5^{\circ}C$). The specific gas yield was expressed in terms of gram total chemical oxygen demand (mL/g TCOD added) and gram volatile solids added (mL/g VS added) and their effectiveness was discussed. The biogas and methane production were predicted using first order kinetic model and the modified Gompertz model. The critical hydraulic retention time for biomass washout was determined using Chen and Hashimoto model. Results: The biogas and methane yield from SM was 346 and 274 mL/ TCOD added, respectively after 100 days of digestion. The average methane content in the biogas produced from SM was 79% and $H_2S$ concentration was in the range of 3000-4108 ppm. It took around 32-47 days for 80-90% of biogas recovery and the TCOD removal from SM was calculated to be 85%. When the specific biogas and methane yield from SM (with very high TVFA concentration) was expressed in terms of oven dried volatile solids (VS) basis, the gas yield was found to be over estimated. The difference in the measured and predicted gas yield was in the range of 1.2-1.5% when using first order kinetic model and 0.1% when using modified Gompertz model. The effective time for biogas production ($T_{Ef}$) from SM was calculated to be in the range of 30-45 days and the critical hydraulic retention time ($HRT_{Critical}$) for biomass wash out was found to be 9.5 days. Conclusions: The modified Gompertz model could be better in predicting biogas and methane production from SM. The HRT greater than 10 days is recommended for continuous digesters using SM as feedstock.

Effect of hysteretic constitutive models on elasto-plastic seismic performance evaluation of steel arch bridges

  • Wang, Tong;Xie, Xu;Shen, Chi;Tang, Zhanzhan
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1089-1109
    • /
    • 2016
  • Modified two-surface model (M2SM) is one of the steel elasto-plastic hysteretic constitutive models that consider both analysis accuracy and efficiency. However, when M2SM is used for complex strain history, sometimes the results are irrational due to the limitation of stress-strain path judgment. In this paper, the defect of M2SM was re-modified by improving the judgment of stress-strain paths. The accuracy and applicability of the improved method were verified on both material and structural level. Based on this improvement, the nonlinear time-history analysis was carried out for a deck-through steel arch bridge with a 200 m-long span under the ground motions of Chi-Chi earthquake and Niigata earthquake. In the analysis, we compared the results obtained by hysteretic constitutive models of improved two-surface model (I2SM) presented in this paper, M2SM and the bilinear kinematic hardening model (BKHM). Results show that, although the analysis precision of displacement response of different steel hysteretic models differs little from each other, the stress-strain responses of the structure are affected by steel hysteretic models apparently. The difference between the stress-strain responses obtained by I2SM and M2SM cannot be neglected. In significantly damaged areas, BKHM gives smaller stress result and obviously different strain response compared with I2SM and M2SM, and tends to overestimate the effect of hysteretic energy dissipation. Moreover, at some position with severe damage, BKHM may underestimate the size of seismic damaged areas. Different steel hysteretic models also have influences on structural damage evaluation results based on deformation behavior and low cycle fatigue, and may lead to completely different judgment of failure, especially in severely damaged areas.

폐-루우프 피이드백에 기준한 SM-MF 제어기를 이용한 다기 전력계통안정기 설계 : Part3 (Design of Multimachine Power System Stabilizer using CLF-based SM-MF Controller : Part 3)

  • 이상성;박종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.1168-1170
    • /
    • 1997
  • In this paper, the sliding mode-model following(SM-MF) power system stabilizer(PSS) including closed-loop feedback(CLF) for single machine system is extended to multimachine system. Simulation results show that the SM-MF multimachine stabilizer is able to achieve asymptotic tracking error between the reference model state and the controlled plant state at different initial conditions.

  • PDF

협업 설계를 위한 소셜미디어와 Product Data Management 통합 (Integration of Social Media with Product Data Management for Collaborative Product Design)

  • 도남철
    • 대한산업공학회지
    • /
    • 제42권1호
    • /
    • pp.50-56
    • /
    • 2016
  • Social media (SM) for expressing thoughts and opinions of people in network communities can support collaboration among stakeholders in business activities. To enhance collaboration for product design, this study integrates SM with a product data management (PDM) system that manages main product development processes and data in manufacturing companies. This study proposes a text messaging SM model that shares core components of PDM systems and uses product structures in PDM systems as networks for SM broadcasting. The SM model is implemented with a research purpose PDM system and applied to product design experiments to show feasibility of the proposed SM model in PDM systems.

셀룰러 토폴로지를 이용한 프로그레시브 솔리드 모델 생성 및 전송 (Generation and Transmission of Progressive Solid Models U sing Cellular Topology)

  • 이재열;이주행;김현;김형선
    • 한국CDE학회논문집
    • /
    • 제9권2호
    • /
    • pp.122-132
    • /
    • 2004
  • Progressive mesh representation and generation have become one of the most important issues in network-based computer graphics. However, current researches are mostly focused on triangular mesh models. On the other hand, solid models are widely used in industry and are applied to advanced applications such as product design and virtual assembly. Moreover, as the demand to share and transmit these solid models over the network is emerging, the generation and the transmission of progressive solid models depending on specific engineering needs and purpose are essential. In this paper, we present a Cellular Topology-based approach to generating and transmitting progressive solid models from a feature-based solid model for internet-based design and collaboration. The proposed approach introduces a new scheme for storing and transmitting solid models over the network. The Cellular Topology (CT) approach makes it possible to effectively generate progressive solid models and to efficiently transmit the models over the network with compact model size. Thus, an arbitrary solid model SM designed by a set of design features is stored as a much coarser solid model SM/sup 0/ together with a sequence of n detail records that indicate how to incrementally refine SM/sup 0/ exactly back into the original solid model SM = SM/sup 0/.

Neutron Cross Section Evaluation on Pr-141, Nd-143, Nd-145, Sm-147 and Sm-149

  • Lee, Y. D.;J. H. Chang
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.370-381
    • /
    • 2002
  • The neutron induced nuclear data for Pr-141, Nd-143, Nd-145, Sm-147 and Sm-149 were calculated and evaluated from 10 keV to 20 MeV. The energy dependent optical model potential parameters were extracted based on the recent experimental data and applied up to 20 MeV. The s-wave strength function was calculated. Spherical optical model , statistical model in equilibrium energy, multistep direct and multistep compound model in pre-equilibrium energy and direct capture model were introduced in Empire calculation. The theoretically calculated cross sections were compared with the experimental data and the evaluated files. The model calculated total and capture cross sections were in good agreement with the reference experimental data. The capture cross sections in pre-equilibrium were enhanced in recent released Empire version. The evaluated cross section results were compiled to ENDF-6 format and will improve the ENDF/B-Vl.

A study on application of high strength steel SM570 in bridge piers with stiffened box section under cyclic loading

  • Kang, Lan;Suzuki, Motoya;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.583-594
    • /
    • 2018
  • Although a lot of experimental and analytical investigations have been carried out for steel bridge piers made of SS400 and SM490, the formulas available for SS400 and SM490 are not suitable for evaluating ultimate load and deformation capacities of steel bridge piers made of high strength steel (HSS) SM570. The effect of various parameters is investigated in this paper, including plate width-to-thickness ratio, column slenderness ratio and axial compression force ratio, on the ultimate load and deformation capacities of steel bridge box piers made of SM570 steel subjected to cyclic loading. The elasto-plastic behavior of the steel bridge piers under cyclic loads is simulated through plastic large deformation finite element analysis, in which a modified two-surface model (M2SM) including cyclic hardening is employed to trace the material nonlinearity. An extensive parametric study is conducted to study the influences of structural parameters on the ultimate load and deformation capacities. Based on these analytical investigations, new formulas for predicting ultimate load and deformation capacities of steel bridge piers made of SM570 are proposed. This study extends the ultimate load and deformation capacities evaluation of steel bridge piers from SS400, SM490 steels to SM570 steel, and provides some useful suggestions.