• Title/Summary/Keyword: SLOPE STABILITY ANALYSIS

Search Result 904, Processing Time 0.021 seconds

Soil Water Characteristic Curve of the Weathered Granite Soil through Simulated Rainfall System and SWCC Cell Test (강우재현 모형실험과 SWCC Cell 실험에 의한 화강암질 풍화토의 함수특성곡선)

  • Ki, Wan-Seo;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.523-535
    • /
    • 2008
  • A simulated rainfall system was built, and the unsaturated characteristics were examined by execution of simulated rainfall system test and soil water characteristic curve cell test(SWCC Cell Test) under the various rainfall and slope conditions. With the results, the applicability of infiltration behavior under rainfall and soil water characteristic curve models to the unsaturated weathered granite soil was examined. At the results of comparison the volumetric water content and matric suction measured in the wetting process(under rainfall) with those in the drying process(leaving as it was) of the simulated rainfall system, the volumetric water content showed a difference of $2{\sim}5%$ and matric suction of about $3{\sim}10\;kPa$, indicating the occurrence of hysteresis. In addition, the difference was relatively larger in matric suction than in the volumetric water content, and this tells that the hysteresis behavior is larger in matric suction. When the soil water characteristic curve derived from measurements in simulated rainfall system test were compared with those from the soil water characteristic curve cell test, both methods produced soil water characteristic curves close each other in the wetting process and the drying process, but in both, there was a difference between results obtained from in the wetting process and those from in the drying process. Thus, when soil water characteristic curves are rationally applied to the design and stability analysis considering of the properties of unsaturated soil, it is considered desirable to apply the soil water characteristic curve of the wetting process to the wetting process, and that of the drying process to the drying process.

Analysis on Behavior Characteristics of Underground Facility Backfilled with Clsm According to Adjacent Excavation (CLSM으로 되메움된 지하 인프라 매설물의 근접 굴착에 따른 거동특성 분석 )

  • Seung-Kyong, You;Nam-Jae, Yu;Gigwon, Hong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.101-109
    • /
    • 2022
  • This study describes the results of model experiment to analyze the effect of backfill material types on the behavior of underground facility. In the model experiment, backfill materials around the existing underground facility were applied with soil (Jumunjin standard sand) and CLSM. The displacement of underground facility was analyzed for each excavation stage considering the separation distance between the excavation surface and the backfill area based on the experimental results. When soil was applied as a backfill material, the soil on the back of the excavation surface collapsed by excavation and formed an angle of repose, and the process of slope stability was repeated at each excavation stage. In addition, the displacement of underground facility began to occur in the excavation stage that the failure line of soil passes the installation location of the underground facility. When CLSM was applied as a backfill material, there was almost no horizontal and vertical displacement of the ground regardless of the separation distance from the excavation surface even when excavation proceeded to the backfill depth. Therefore, this result showed that it can have a resistance effect against the lateral earth pressure generated and the collapse of the original ground by adjacent excavation, if a backfill material with high stiffness such as CLSM is applied.

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF

Analysis of Kap-Chon's Water Level by the Waterside Planting (수변 식재에 따른 갑천의 수위 분석)

  • Woo, Won-Jae;Chung, Dong-Yang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.1 no.1
    • /
    • pp.3-17
    • /
    • 1998
  • The purposes of this study is to investigate the possibility of planting trees at space land in the riverside. The space land is for the green space. Calculating the plantable space in the representation section and the flood flowing stability of the existing banks based on the hydrological and meteorological data of the Kap-Chon riverbasin located in Tae-jon, the following results are drawn. (1) The flood discharges in each flow section are $698.7m^3/s$ in section 1, $654.6m^3/s$ in section 2, and $1353.3m^3/s$ in section 3 during 100 years recurrence interval. Because the designed-flood discharges in those sections are $1719.9m^3/s$, $2119.7m^3/s$, and $1512.8m^3/s$ respectively, safety for flood flowing is sufficient in existing banks. (2) The possible clearance for planting trees is 1.80m in section 1, 3.90m in section 2, and 0.01m in section 3. Planting clearance is enough in section 1 and 2. However, planting should be planned after estimating a rise-height due to the bridge piers, because many piers under riverine-highway are now on the construction in section 2. The section 3 does not have sufficient clearance for planting trees, but the planting is possible after getting enough flow area with slope by cutting the terrace land on the river artificially heightened. (3) In case of planting a tree 70cm diameter in $1m^2$ in section 1, the water level increases by 0.60m. Planting a tree in a $48m^2$ area increases the water level by 0.90m. Considering that plantable clearance is 1.8m in section 1, it is sufficient to flow safely. But if the trees are planted so compactly from the upper stream, expected heavy resistance is expected due to caught materials on the trees. So, trees have to be planted widely in upper streams but compactedly in lower streams. (4) The river width without changing, Kap-Chon's flow channel can be snaked in accordance with the nature law the wide terrace land in the riverside. Decreased flow area due to planting trees will be compensated by the inclination of terrace land. And, it is theoretically proved that the flood discharge is safe even though the terrace land on the river is parked similar to the nature. Planting trees in the terrace land of the Kap-chon river to the extent that flood flowing is not adversely affected, we can get the enjoyable park to citizens not spending expensive cost. It also contributes to the recovery of ecosystem, which gives the natural beauty of river and shade to citizens and becomes good natural-educational places for children.

  • PDF