• Title/Summary/Keyword: SLC26A4

Search Result 10, Processing Time 0.024 seconds

A Study on the Correlation between SLC25A26 Polymorphism and Gastritis and Gastric Ulcers in Koreans (한국인의 SLC25A26 유전자 다형성과 위염, 위궤양과의 상관성에 관한 연구)

  • Soyeun PARK;Dahyun HWANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.291-297
    • /
    • 2023
  • Gastritis is an inflammation of the gastric mucosa and gastric ulcers are a break in the mucosa of the stomach lining. Past research on gastritis and gastric ulcers has been mainly conducted from the perspective that environmental factors are the primary cause of these gastric diseases. However, recently the importance of genetic factors has been emphasized due to current developments in genetic research. The SLC25A26 gene is believed to be associated with the accumulation of reactive oxygen species. Oxidative stress promotes an inflammatory response, which increases the production of free radicals and causes cellular damage, and these lead to the development of gastric diseases. In this study, the correlation between SLC25A26 and gastric diseases was analyzed. Polymorphisms in SLC25A26 were analyzed in 1,369 domestic gastric disease patients and 7,471 healthy controls. As a result, 11 single nucleotide polymorphisms (SNPs) (in the genotype) and 13 SNPs (in the imputation) showed statistical significance (P<0.05), and high relative risk of gastric diseases. Among them, the rs13874 allele of SLC25A26 showed a highly significant association with gastric diseases. In the genotype-based mRNA expression analysis, the minor allele (C) group showed increased mRNA expression and this could increase oxidative stress. In conclusion, SLC25A26 polymorphisms are associated with gastric diseases. These results may provide a basis for new guidelines for gastric disease management in the Korean population.

Carrier frequency of SLC26A4 mutations causing inherited deafness in the Korean population

  • Kim, Hyogyeong;Lim, Hwan-Sub;Ryu, Jae-Song;Kim, Hyun-Chul;Lee, Sanghoo;Kim, Yun-Tae;Kim, Young-Jin;Lee, Kyoung-Ryul;Park, Hong-Joon;Han, Sung-Hee
    • Journal of Genetic Medicine
    • /
    • v.11 no.2
    • /
    • pp.63-68
    • /
    • 2014
  • Purpose: The mutation of the SLC26A4 gene is the second most common cause of congenital hearing loss after GJB2 mutations. It has been identified as a major cause of autosomal recessive nonsyndromic hearing loss associated with enlarged vestibular aqueduct and Pendred syndrome. Although most studies of SLC26A4 mutations have dealt with hearing-impaired patients, there are a few reports on the frequency of these mutations in the general population. The purpose of this study was to evaluate the prevalence of SLC26A4 mutations that cause inherited deafness in the general Korean population. Materials and Methods: We obtained blood samples from 144 Korean individuals with normal hearing. The samples were subjected to polymerase chain reaction to amplify the entire coding region of the SLC26A4 gene, followed by direct DNA sequencing. Results: Sequencing analysis of this gene identified 5 different variants (c.147C>G, c.225G>C, c.1723A>G, c.2168A>G, and c.2283A>G). The pathogenic mutation c.2168A>G (p.H723R) was identified in 1.39% (2/144) of the subjects with normal hearing. Conclusion: These data provide information about carrier frequency for SLC26A4 mutation-associated hearing loss and have important implications for genetic diagnostic testing for inherited deafness in the Korean population.

Fault Test Algorithm for MLC NAND-type Flash Memory (MLC NAND-형 플래시 메모리를 위한 고장검출 테스트 알고리즘)

  • Jang, Gi-Ung;Hwang, Phil-Joo;Chang, Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.26-33
    • /
    • 2012
  • As the flash memory has increased the market share of data storage in imbedded system and occupied the most of area in a system, It has a profound impact on system reliability. Flash memory is divided NOR/NAND-type according to the cell array structure, and is classified as SLC(Single Level Cell)/MLC(Multi Level Cell) according to reference voltage. Although NAND-type flash memory is slower than NOR-type, but it has large capacity and low cost. Also, By the effect of demanding mobile market, MLC NAND-type is widely adopted for the purpose of the multimedia data storage. Accordingly, Importance of fault detection algorithm is increasing to ensure MLC NAND-type flash memory reliability. There are many researches about the testing algorithm used from traditional RAM to SLC flash memory and it detected a lot of errors. But the case of MLC flash memory, testing for fault detection, there was not much attempt. So, In this paper, Extend SLC NAND-type flash memory fault detection algorithm for testing MLC NAND-type flash memory and try to reduce these differences.

Clinical genetics of defects in thyroid hormone synthesis

  • Kwak, Min Jung
    • Annals of Pediatric Endocrinology and Metabolism
    • /
    • v.23 no.4
    • /
    • pp.169-175
    • /
    • 2018
  • Thyroid dyshormonogenesis is characterized by impairment in one of the several stages of thyroid hormone synthesis and accounts for 10%-15% of congenital hypothyroidism (CH). Seven genes are known to be associated with thyroid dyshormonogenesis: SLC5A5 (NIS), SCL26A4 (PDS), TG, TPO, DUOX2, DUOXA2, and IYD (DHEAL1). Depending on the underlying mechanism, CH can be permanent or transient. Inheritance is usually autosomal recessive, but there are also cases of autosomal dominant inheritance. In this review, we describe the molecular basis, clinical presentation, and genetic diagnosis of CH due to thyroid dyshormonogenesis, with an emphasis on the benefits of targeted exome sequencing as an updated diagnostic approach.

Gene Expression Signatures for Compound Response in Cancers

  • He, Ningning;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.173-180
    • /
    • 2011
  • Recent trends in generating multiple, large-scale datasets provide new challenges to manipulating the relationship of different types of components, such as gene expression and drug response data. Integrative analysis of compound response and gene expression datasets generates an opportunity to capture the possible mechanism of compounds by using signature genes on diverse types of cancer cell lines. Here, we integrated datasets of compound response and gene expression profiles on NCI60 cell lines and constructed a network, revealing the relationship for 801 compounds and 341 gene probes. As examples, obtusol, which shows an exclusive sensitivity on a small number of colon cell lines, is related to a set of gene probes that have unique overexpression in colon cell lines. We also found that the SLC7A11 gene, a direct target of miR-26b, might be a key element in understanding the action of many diverse classes of anticancer compounds. We demonstrated that this network might be useful for studying the mechanisms of varied compound response on diverse cancer cell lines.

A Case of Progressive FSGS and Chronic Kidney Disease in Congenital Chloride Diarrhea with SLC26A3 Mutation (선천성 염소성 설사를 가진 환아에서 국소 분절 사구체경화증이 발생하여 만성 신장병으로 발전한 사례)

  • Seo, Young-Jun;Cheong, Han Bin;An, Seok Min;Sin, Woo Cheol;Bae, Eun Joo;Yoon, Jong Hyung;Jeong, Hwal Rim;Lee, Hong Jin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.3
    • /
    • pp.87-94
    • /
    • 2018
  • We present the case of long-term observation of a patient with chronic kidney disease (CKD) caused by advanced focal segmental glomerulosclerosis (FSGS) resulting from underlying congenital chloride diarrhea (CLD). A 20-year-old woman was admitted for prolonged proteinuria despite conservative treatment for CLD. She was diagnosed with CLD and started taking KCl salt supplementation from the time of birth. Mild proteinuria was first found at 12 years of age, which progressed to moderate proteinuria at 16 years of age. At 16 years of age, CKD stage 2 with FSGS was diagnosed based on the initial assessment of the glomerular filtration rate (GFR) and kidney histology. On admission, we re-assessed her renal function, histology and genetic analysis. GFR had deteriorated to CKD stage 4 and renal histology revealed an advanced FSGS combined with tubulointerstitial fibrosis. A homozygous mutation in the SLC26A3 gene (c.2063-1G>T) was found by diagnostic exome sequencing and may have been inherited from both parents. CLD patients can be more vulnerable to renal injury, which may also cause progression of renal failure. Therefore, even if there is an early diagnosis and adequate salt supplementation, close monitoring of renal function and tailored treatment should be emphasized for renal protection and favorable CLD prognosis.

  • PDF

Idiopathic infantile hypercalcemia with severe nephrocalcinosis, associated with CYP24A1 mutations: a case report

  • Yoo, Jeesun;Kang, Hee Gyung;Ahn, Yo Han
    • Childhood Kidney Diseases
    • /
    • v.26 no.1
    • /
    • pp.63-67
    • /
    • 2022
  • Nephrocalcinosis often occurs in infants and is caused by excessive calcium or vitamin D supplementation, neonatal primary hyperparathyroidism, and genetic disorders. Idiopathic infantile hypercalcemia (IIH), a rare cause of nephrocalcinosis, results from genetic defects in CYP24A1 or SLC34A1. Mutations in CYP24A1, which encodes 25-hydroxyvitamin D 24-hydroxylase, disrupt active vitamin D degradation. IIH clinically manifests as failure to thrive and hypercalcemia within the first year of life and usually remits spontaneously. Herein, we present a case of IIH wih CYP24A1 mutations. An 11-month-old girl visited our hospital with incidental hypercalcemia. She showed failure to thrive, and her oral intake had decreased over time since the age of 6 months. Her initial serum parathyroid hormone level was low, 25-OH vitamin D and 1,25(OH)2 vitamin D levels were normal, and renal ultrasonography showed bilateral nephrocalcinosis. Whole-exome sequencing revealed compound heterozygous variants in CYP24A1 (NM_000782.4:c.376C>T [p.Pro126Ser] and c.1310C>A [p.Pro437His]). Although her hypercalcemia and poor oral intake spontaneously resolved in approximately 8 months, we suggested that her nephrocalcinosis and renal function be regularly checked in consideration of potential asymptomatic renal damage. Hypercalcemia caused by IIH should be suspected in infants with severe nephrocalcinosis, especially when presenting with failure to thrive.

Mitochondrial energy metabolic transcriptome profiles during cardiac differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Kim, Yeseul;Kim, Jae Ho;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.357-365
    • /
    • 2022
  • Simultaneous myofibril and mitochondrial development is crucial for the cardiac differentiation of pluripotent stem cells (PSCs). Specifically, mitochondrial energy metabolism (MEM) development in cardiomyocytes is essential for the beating function. Although previous studies have reported that MEM is correlated with cardiac differentiation, the process and timing of MEM regulation for cardiac differentiation remain poorly understood. Here, we performed transcriptome analysis of cells at specific stages of cardiac differentiation from mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs). We selected MEM genes strongly upregulated at cardiac lineage commitment and in a time-dependent manner during cardiac maturation and identified the protein-protein interaction networks. Notably, MEM proteins were found to interact closely with cardiac maturation-related proteins rather than with cardiac lineage commitment-related proteins. Furthermore, MEM proteins were found to primarily interact with cardiac muscle contractile proteins rather than with cardiac transcription factors. We identified several candidate MEM regulatory genes involved in cardiac lineage commitment (Cck, Bdnf, Fabp4, Cebpα, and Cdkn2a in mESC-derived cells, and CCK and NOS3 in hiPSC-derived cells) and cardiac maturation (Ppargc1α, Pgam2, Cox6a2, and Fabp3 in mESC-derived cells, and PGAM2 and SLC25A4 in hiPSC-derived cells). Therefore, our findings show the importance of MEM in cardiac maturation.

Clinical and Molecular Characterization of Korean Patients with Glycogen Storage Type 1b (당원병1b형의 임상양상 및 분자유전학적 특징)

  • Cho, Ja Hyang;Kim, Yoo-Mi;Choi, Jin-Ho;Lee, Beom Hee;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • Glycogen storage disease type Ib (GSD Ib) is one of the rare inherited metabolic disease caused by mutation of SLC37A4 gene. Clinical characteristics include hepatomegaly, hypoglycemia, lactic acidosis, hyperlipidemia and high serum uric acid concentration. The authors analyzed clinical and molecular characteristics of three Korean patients (one male and two females) with GSD Ib by retrospective review of medical records. Two patients were diagnosed in toddler period by hypoglycemia and hepatomegaly. One patient was diagnosed by growth retardation and short stature in puberty. c.412T>C (p.Trp138Arg) (3/6 alleles, 50.0%) was most frequently observed, following by p.Leu348Valfs*53 (1 allele), p.Pro191Leu (1 allele), p.Ala148Val (1 allele) in molecular analysis. Uncooked corn starch and allopurinol was administered. Because all three patients had neutropenia and recurrent infections, G-CSF was administered. Two patients had severe osteoporosis needing calcium supplement. The patient who diagnosed at puberty had relatively poor prognosis demonstrated by having severe infection and complications in liver and kidney.

Effect of black chokeberry on skeletal muscle damage and neuronal cell death

  • Kim, Jisu;Lee, Kang Pa;Beak, Suji;Kang, Hye Ra;Kim, Yong Kyun;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.4
    • /
    • pp.26-31
    • /
    • 2019
  • [Purpose] Numerous epidemiological studies have shown that it is possible to prescribe exercise for neurodegenerative disease, such as Alzheimer's disease and Parkinson's disease. However, despite the availability of diverse scientific knowledge, the effects of exercise in this regard are still unclear. Therefore, this study attempted to investigate a substance, such as black chokeberry (Aronia melanocapa L.) that could improve the ability of the treatment and enhance the benefits of exercising in neurodegenerative diseases. [Methods] The cell viability was tested with 2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolim-5-carboxanilide and the cells were stained with ethidium homodimer-1 solution. The mRNA expression levels were evaluated by microarray. The active compounds of black chokeberry ethanolic extract (BCE) were analyzed by gas chromatography. The chemical shift analysis in the brain was performed using magnetic resonance spectroscopy. [Results] BCE treatment decreased hydrogen peroxide-induced L6 cell death and beta amyloid induced primary neuronal cell death. Furthermore, BCE treatment significantly reduced the mRNA levels of the inflammatory factors, such as IL-1α, Cxcl13, IL36rn, Itgb2, Epha2, Slamf8, Itgb6, Kdm6b, Acvr1, Cd6, Adora3, Cd27, Gata3, Tnfrsf25, Cd40lg, Clec10a, and Slc11a1, in the primary neuronal cells. Next, we identified 16 active compounds from BCE, including D-mannitol. In vivo, BCE (administered orally at a dosage of 50 mg/kg) significantly regulated chemical shift in the brain. [Conclusion] Our findings suggest that BCE can serve as a candidate for neurodegenerative disease therapy owing to its cyto-protective and anti-inflammatory effects. Therefore, BCE treatment is expected to prevent damage to the muscles and neurons of the athletes who continue high intensity exercise. In future studies, it would be necessary to elucidate the effects of combined BCE intake and exercise.