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Purpose: The mutation of the SLC26A4 gene is the second most common cause of congenital hearing loss after GJB2 
mutations. It has been identified as a major cause of autosomal recessive nonsyndromic hearing loss associated with enlarged 
vestibular aqueduct and Pendred syndrome. Although most studies of SLC26A4 mutations have dealt with hearing-impaired 
patients, there are a few reports on the frequency of these mutations in the general population. The purpose of this study was 
to evaluate the prevalence of SLC26A4 mutations that cause inherited deafness in the general Korean population. 
Materials and Methods: We obtained blood samples from 144 Korean individuals with normal hearing. The samples were 
subjected to polymerase chain reaction to amplify the entire coding region of the SLC26A4 gene, followed by direct DNA 
sequencing. 
Results: Sequencing analysis of this gene identified 5 different variants (c.147C>G, c.225G>C, c.1723A>G, c.2168A>G, and 
c.2283A>G). The pathogenic mutation c.2168A>G (p.H723R) was identified in 1.39% (2/144) of the subjects with normal 
hearing. 
Conclusion: These data provide information about carrier frequency for SLC26A4 mutation-associated hearing loss and have 
important implications for genetic diagnostic testing for inherited deafness in the Korean population.  
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with NSHL. Furthermore, autosomal recessive hearing loss 
(ARHL) has been considered the main reason for NSHL (http:// 
hereditaryhearingloss.org/). In patients with NSHL, some 
causative mutations in genes, such as GJB2, SLC26A4, MYO15A, 
OTOF, CDH23, and TMC1 have been shown to be much more 
prevalent than other mutations [3]. In particular, GJB2 and 
SLC26A4 are the most frequent causative genes in genetic 
hearing loss among Koreans [4,5]. GJB2 mutations are the most 
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Introduction

Hearing loss is the most frequent sensorineural disorder in 
human. Approximately 1 in 1,000 children is born with hearing 
loss, and more than 50% of cases are caused by genetic defects 
[1,2]. Among them, 70% are accounted for by nonsyndromic 
hearing loss (NSHL); over 200 genes have been associated 
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frequent cause of NSHL in most world populations, and can 
account for up to 50% of autosomal recessive NSHL cases [6]. 
Apart from mutations in GJB2, much research has shown that 
variants in SLC26A4 are the second most frequent cause of 
ARHL [2,7].

In contrast to the GJB2 gene, mutations in the SLC26A4 gene 
have been identified as a major cause of ARHL associated with 
enlarged vestibular aqueduct (EVA) and Pendred syndrome. 
Pendred syndrome, which accounts for up to 10% of all 
hereditary hearing impairment, is characterized by bilateral 
hearing loss, EVA, and an iodine organification defect in the 
thyroid gland, which may lead to goiter [8,9]. In addition, in 
some patients Pendred syndrome leads to a congenital inner 
ear malformation, known as the Mondini malformation. 
Therefore, both nonsyndromic EVA and Pendred syndrome can 
be clinically associated with temporal bone abnormalities [10]. 
Pendrin, a protein encoded by the SLC26A4 gene, exchange of 
iodide/chloride in thyroid cells [11], and is involved in secretion 
of bicarbonate into the endolymph in the inner ear [12]. 
Almost 200 variants in the SLC26A4 gene have been identified 
in Pendred syndrome and NSHL patients with EVA. Variants 
have been detected throughout the entire gene (SLC26A4 
mutation database, http://www.healthcare.uiowa.edu/labs/
pendredandbor), thus analysis of all exons and splice sites in 
each proband is necessary [13]. 

Among different countries or regions, specific variants of 
the SLC26A4 gene have been found. In Northern European 
populations, p.T416P and c.1001+1G>A were the most frequent 
mutations in the SLC26A4 gene [14], whereas p.Q446R, p.V239D, 
and p.S90L were the most frequent mutations in Pakistanis [15]. 
Research on the SLC26A4 gene is insufficient in the Korean 
population because most studies of SLC26A4 mutations have 
dealt with hearing-impaired patients. There have been a few 
reports (case-control studies) on the prevalence of SLC26A4 
mutations [5,16-18]. In this study, we evaluated the carrier 
frequency of SLC26A4 mutations that cause inherited deafness 
in the general Korean population. 

Materials and Methods

1. Subjects
Samples were obtained from 144 unrelated individuals with 

normal hearing in the Korean population. Auditory capacity was 
established by evaluating pure-tone air-and bone-conduction 

threshold audiometry. Subjects gave written informed consent 
for genetic testing. Institutional review board (IRB) approval 
was obtained for the study from our IRB committee. Informed 
consent was confirmed by the IRB. 

Genomic DNA was extracted from blood using the QIAamp 
DNA Blood Mini Kit (QIAGEN, Hilden, Germany). 

2. Mutation analysis of SLC26A4 
Mutations were detected by polymerase chain reaction (PCR) 

amplification, using primers of the coding exons 2-21 and the 
flanking intron sequences. Amplification was carried out in a 
C1000TM Thermal Cycler (Bio-Rad Laboratories, Inc., Hercules, CA, 
USA) from 25 ng target DNA in a final volume of 25 μL following 
the manufacturer’s instructions. The reaction mixture consisted 
of 5 μL of each primer and SolgTM 2X Multiplex PCR Smart Mix 
(Solgent, Daejeon, Korea). The PCR conditions were denaturation 
at 95°C for 15 minutes, 35 cycles of denaturation at 95°C for 
40 seconds, annealing at 56°C for 40 seconds, and extension 
72°C for 1 minute. Final extension was at 72°C for 5 minutes. 
Unincorporated deoxyribonucleotide triphosphates (dNTPs) 
and primers were removed from the PCR products, which were 
then directly sequenced and analyzed using an ABI 3130XL DNA 
Sequencer (Applied Biosystems, Foster City, CA, USA) and ABI 
Sequencing Analysis Software (v. 5.0; Applied Biosystems). The 
resultant sequences were compared with the coding sequence 
of SLC26A4 (GenBank Accession No.NM_000441.1), and then 
the CLC Sequence Viewer 6 (http://www.clcbio.com/) was used 
to check whether the variation in the Pendrin protein structure 
was conserved between different species. 

Results

Molecular analysis of the entire SLC26A4 gene in 144 normal-
hearing Korean individuals revealed 5 variants in a heterozygous 
state in the coding region, including 1 pathogenic mutation, 
c.2168A>G (p.H723R), 1 unclassified variant, c.147C>G 
(p.S49R), 2 polymorphisms, c.225G>C and c.2283A>G, and 
1 novel variant, c.1723A>G (p.I575V) (Table 1). p.S49R and 
p.H723R had been previously reported [19,20]: p.H723R, which 
replaces histidine for arginine at c.2168A>G in exon 19, is the 
most prevalent mutation in various Asian populations and was 
observed in samples from 2 subjects (2/144, 1.39%) (Fig. 1A). 
The p.S49R variant was encodes serine at c.147C>G in exon 2 as 
a substitute for arginine. It was previously reported in Chinese 
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normal populations but has remained unclassified [21,22]; it 
was observed in 2 subjects (2/144, 1.39%) in this study (Table 
1). A novel variant, p.I575V, which has an A→G change at 
nucleotide 1723 in exon 16 and results in an isoleucine to valine 
substitution at amino acid 575, has never been reported and was 
detected in 1 subject (1/144, 0.69%) (Fig. 1B). We also detected 2 
polymorphisms, c.225G>C and c.2283A>G, from each subject in 
a heterozygous state. 

In order to determine how conserved the novel variant p.I575V 
was at the substitute location, we used the CLC Sequence 
Viewer 6 (Fig. 2). We checked the conservation scores of the 
alignments generated form pendrin protein sequences of the 
following species: chimpanzee (Pan troglodytes, XP_519308), 
monkey (Macaca mulatta, XP_001094049), orangutan (Pongo 
abelii , XP_003780614), sheep (Ovis aries , XP_004007900), 
cattle (Bos taurus , XP_002686849), wild boar (Sus scrofa , 
XP_003357559), dolphin (Tursiops truncates, XP_004315995), 
mouse (Mus musculus, NP_035997), and rat (Rattus norvegicus, 
NP_062087). As shown in Fig. 2, we found each variant to be 

highly conserved. We also investigated the pathogenicity of 
the p.I575V variants using the Polymorphism Phenotyping 
v2 (PolyPhen-2; http://genetics.bwh.harvard.edu/pph2/) and 
Sorting Intolerant from Tolerant (SIFT; http://sift.bii.a-star.edu.
sg/) prediction software. Both prediction tools indicated the 
results were benign even though the substitute location was 
highly conserved (Table 1). 

Table 1. SLC26A4 sequence variants detected in 144 subjects with normal hearing

Nucleotide 
change

Amino acid 
change

Characterization 
of variant

Score Carriersc 
(n)

Frequency  
(%)PolyPhen-2a SIFTb

c.147C>G p.S49R Unclassified 0.00 0.61 2 1.39

c.225G>C p.(=) Polymorphism 1 0.69

c.1723A>G p.I575Vd Unclassified 0.00 0.47 1 0.69

c.2168A>G p.H723R Pathogenic 1.000 0.00 2 1.39

c.2283A>G p.(=) Polymorphism 1 0.69
aBig positive values may indicate that the studied substitution is rarely or never observed in the protein family. 
bAmino acids with probabilities <0.05 are predicted to be deleterious.
cTotal number=144.
dNovel variant.
PolyPhen-2, polymorphism phenotyping v2; SIFT, sorting intolerant from tolerant.

Fig. 2. Alignment of human pendrin protein sequence with its 
homologs. The red arrow indicates that isoleucine at amino acid 575 is 
highly conserved.

Fig. 1. Nucleotide sequence showing a heterozygous nucleotide change at the mutated location (arrows). (A) The H723R mutation encodes a 
histidine to arginine change at position 723. This mutation has been known as the most prevalent mutation in various Asian populations; in this 
study it was detected in samples from 2 subjects (2/144, 1.39%) in a heterozygous state. (B) A novel variant, A→G, at nucleotide 1723 in exon 16, 
which results in an isoleucine to valine substitution at amino acid 575.
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As shown in Table 2, the carrier frequency of p.H723R was 
calculated to be 1.39% with a 95% binomial confidence 
interval of 0.17-4.93. Compared to other Asian populations, this 
frequency proved to be higher than that of the Chinese (0.58%) 
and Japanese populations (1.04%) [23,24], and similar to that 
found in previously studied Korean populations (Table 2) [5,17].

Discussion

SLC26A4 gene screening is widely used in the diagnosis of 
Pendred syndrome and EVA. Previous studies indicated that the 
spectrum of SLC26A4 mutations vary based on the patients’s 
ethnic background [5,21,22,24]. The SLC26A4 gene variants 
present in the Asian population are significantly different from 
that of ethnic groups from European ancestry [5,24]. Park et 
al. [18] found that SLC26A4 mutations occurred in 81% of 
unrelated Korean deaf patients with EVA. Among these SLC26A4 
mutations, p.H723R [c.2168A>G] has been shown to be the 
most frequent mutation in East Asian populations, especially 
in Japan and Korea [5,16-18,23]. In the present study, p.H723R 
was detected as the most frequent mutated allele, as expected 
(2/144, 1.39%). To determine the significance of the p.H723R 
frequency in our study, we compared the carrier frequency of 
p.H723R to the normal hearing population of Asia (Table 2). The 
frequency that we found (1.39%) proved to be similar to that 
of Park et al. [5] (1.67%) and Song et al. [17] (1.34%) for Korean 
populations. Our results showed that the prevalence of SLC26A4 
mutations was similar with previous Korean reports even 
though our study screened all exons and splice sites [5]. 

In this study, we evaluated the prevalence of SLC26A4 gene 
mutations that cause inherited deafness in a Korean population 
with normal hearing and identified 5 different variants. One 
mutation, p.I575V, has not been previously identified as a 
variant. We confirmed the pathogenicity of this novel variant 

through alignment and prediction programs. Comparison of 
the pendrin protein (encoded by the SLC26A4 gene) sequences 
between species showed that the position of this mutation 
is highly conserved (Fig. 2); however, pathogenic prediction 
programs unexpectedly indicated that the mutation is estimated 
to be benign (Table 1).

Among the detected variants, p.S49R, c.225G>C, and 
c.2283A>G have previously been reported in normal Chinese 
or Inner Mongolian populations [19,25]. In fact, c.919-2A>G is 
the most frequent mutation in the Chinese population; it is a 
splice site mutation in intron 7, which causes skipping of exon 8 
resulting in a premature stop codon and leading to a predicted 
truncated protein [26,27]. However, this variant was not found 
in our study even though it was detected in hearing deficient 
populations from Japan, Korea, and China [5,16,24]. Choi et al. 
[28] and Shin et al. [29] reported p.H723R mutation frequencies 
of 63% and 61.5%, respectively, which were higher than their 
reported 18.5% and 30.8%, respectively, for c.919-2A>G in 
Korean patients with EVA. Likewise, the mutations p.L236P, 
p.T416P, and c.1001+1G>A, which, account for nearly half of 
all SLC26A4 mutant alleles in Caucasian populations, were not 
detected in this study [7,21]. 

Despite hearing loss being the most frequent neurosensory 
disorder, deafness can remains undetected until it is too late to 
prevent undesirable or irreversible damage in many patients. 
Evidence shows that identification and habilitation of deaf 
infants before 6 months of age improves language outcomes 
[30,31]. These data support the time-critical nature of newborn 
hearing diagnosis and treatment, and they have provided the 
impetus for newborn hearing screening programs throughout 
the world. However, prior to the implementation of such 
a program, the carrier prevalence in a population and the 
availability of an effective screening test should be evaluated. In 
a Korean study by Han et al. [4], the diversity of GJB2 mutations 
identified in the Korean population pointed to the importance 
of genetic testing by direct sequencing of the entire coding 

Table 2. Carrier frequency of the p.H723R mutation in different normal Asian populations

Population Subjects tested p.H723R Heterozygote Carrier frequency (%) 95% CI binomial 
distribution References

Chinese 173 1 0.58 0-3.18 Chen et al. [23]

Japanese 96 1 1.04 0-5.67 Tsukamoto et al. [24]

Korean-1 120 2 1.67 0.2-5.89 Park et al. [5]

Korean-2 3,057 41a 1.34 0.96-1.82 Song et al. [17]

Korean-3 144 2 1.39 0.17-4.93 Present study
aThis value was obtained by targeted mutation analysis for p.H723R.
CI, confidence interval.
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region, not by targeted mutation analysis. Unlike the GJB2 gene, 
SLC26A4 is a large-scale gene, but until now, 5 variants, p.H723R, 
c.919-2A>G, c.1149+3A>G, p.M147V, and c.365_366insT have 
been considered hot-spot mutations of the SLC26A4 gene in 
Korean. These 5 mutations should be sufficient, as evidenced 
by our results, which are in agreement with those previously 
reported [18]. 

Through genetic testing of considered to ethnic background 
the GJB2 gene and mutational hot-spots of the SLC26A4 gene, 
early diagnosis enables genetic counseling and early effective 
risk assessment for hearing loss patients and their families. In 
conclusion, the SLC26A4 pathogenic mutations in a Korean 
population were identified with a carrier frequency of 1.39%, 
which is similar to that in other East Asian populations. We 
identified 5 variants in a heterozygous state found throughout 
the coding region of SLC26A4 in the general Korean population. 
These results provide a fundamental basis for predicting a 
spectrum of the SLC26A mutation and for the design and 
interpretation of cost-efficient mutation detection algorithms 
in Korea.
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