• Title/Summary/Keyword: SLC12A3 gene

Search Result 14, Processing Time 0.031 seconds

Gitelman Syndrome with Normal Serum Magnesium (정상 마그네슘혈증의 Gitelman 증후군 1례)

  • Cheon, Younghee;Seo, Ji Hye;Cheong, Hae Il;Park, Yong Hoon
    • Childhood Kidney Diseases
    • /
    • v.16 no.2
    • /
    • pp.121-125
    • /
    • 2012
  • Gitelman syndrome is an autosomal recessive renal tubular disorder characterized by hypokalemic metabolic alkalosis, and it is distinguished from Batter syndrome by hypomagnesemia and hypocalciuria. This disorder is caused by mutation in SLC12A3 gene which encodes thiazide-sensitive $Na^+-Cl^-$cotransporter (NCCT) which is expressed in the apical membrane of cells, lining distal convoluted tubule. A 8-year old boy who presented with Rolandic epilepsy, and horseshoe kidney accidentally showed clinical features of metabolic alkalosis, hypokalemia, hypocalciuria without hypomagnesemia. So we identified a heterozygote mutation and an abnormal splicing in the SLC12A3 gene, encoding NCCT. The mutation was detected in the exon 15 and 22 of SLC12A3 gene.

A Case of Idiopathic Renal Hypouricemia with URAT1 Gene Mutation who Showed Persistent Orange-colored Urine (지속적인 주황색 소변을 보인 URAT1 유전자 변이 신성 저요산혈증 1례)

  • Lee Joo-Hoon;Choi Jin-Ho;Yoo Han-Wook;Jeong Jin-Young;Park Young-Seo
    • Childhood Kidney Diseases
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 2006
  • Idiopathic renal hypouricemia is a disorder characterized by impaired urate handling in the renal tubules. Most patients with hypouricemia are asymptomatic and are found incidentally, but the condition is known to be at high risk for exercise-induced acute renal failure or urolithiasis. URAT1 protein encoded by SLC22A12 gene has been identified recently as a urate/anion exchanger in the human kidney. Inactivation mutations in SLC22A12 gene have been shown to cause renal idiopathic hypouricemia. We experienced a 3-year-old boy who presented with persistent orange-colored urine since infancy. His urine contained many uric acid crystals, while the serum showed hypouricemia(0.7 mg/dL). The fractional excretion of uric acid was increased to 41.7%. SLC22a12 gene analysis revealed W258X homozygote alleles. Renal hypouricemia must be included in the differential diagnosis of red-urine and SLC22A12 gene analysis is recommended in idiopathic renal hypouricemia.

  • PDF

Effects of interaction between SLC12A3 polymorphism, salt-sensitive gene, and sodium intake on risk of child obesity (소금민감성 SLC12A3 유전자 다형성에 따른 나트륨섭취가 소아비만에 미치는 영향)

  • Jung, Joohyun;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.50 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Purpose: Obesogenic environments in children, in particular excessive intake of sodium, generate hypertension, which is a major risk factor for chronic diseases. Methods: In all, 725 children, 379 boys and 373 girls, aged 8~9 years were recruited from seven elementary schools in Kuro-ku, Seoul. To evaluate whether or not obesity risk was modulated by salt-sensitive genes, Solute Carrier Familiy 12 member 3 (SLC12A3) was used as the target. After children were assigned into obese (BMI > 85 percentile) or non-obese groups, anthropometry, blood biochemistry, and dietary intakes were measured according to the genotypes GG (wild) or GA+AA (hetero+mutant). Results: Without gender differences, high TG and low HDLc were detected in the obese group compared to the non-obese group. Regardless of obesity, weight gain and blood pressure (BP) increased in the SLC12A3 GA+AA genotype rather than in the GG type. HDLc was associated with obesity risk without genotype difference. Odd ratios for risk of obesity were 15.57 (95% CI 2.192~110.654), 22.84 (95% CI 1.565~333.469), and 9.32 (95%CI 1.262~68.817) in boys and girls with GA+AA genotypes as sodium intake increased above 4,000 mg/day. Dietary calcium, sodium, folate, and vit C were associated with obesity risk according to gender or genotype differences. Since high folate intake reduced obesity risk in only boys with GG type. Risk for overweight and obesity increased in boys with GA+AA genotypes and dietary habits with high sodium and cholesterol and low folate. Conclusion: The A allele of SLC12A3 rs11643718 was sensitive to development of obesity in children as sodium intake increased.

SLC9A6-related developmental and epileptic encephalopathy with spike-and-wave activation in sleep: A case report

  • Hye Ri Bae;Young Ok Kim
    • Journal of Genetic Medicine
    • /
    • v.19 no.2
    • /
    • pp.100-104
    • /
    • 2022
  • The gene encoding solute carrier family 9 member 6 (SLC9A6) on Xq26.3 is associated with Christianson syndrome (CS) mimicking Angelman syndrome. In CS, developmental and epileptic encephalopathy (DEE) appears in about 20%, and DEE with spike-and-wave activation in sleep (SWAS) is reported only in several cases. A 10-year-old boy with DEE showed multidrug resistant focal seizures from 6 months of age. He had progressive microcephaly, regression, global developmental delay without speech, hyperkinesia, and truncal ataxia; he had a long thin face, esotropia, and happy demeanor. Brain magnetic resonance imaging demonstrated cerebellar atrophy. Electroencephalogram at 7.5 years of age showed nearly continuous diffuse paroxysms in slow wave sleep. The seizures were responsive to corticosteroids for a while. Trio whole exome sequencing exhibited a likely pathogenic variant of SLC9A6 in the proband and his asymptomatic mother: c.1194dup (p.Leu399AlafsTer12). This is a rare case report of CS with DEE-SWAS in a Korean patient.

Classification of the Efficacy of Herbal Medicine Alterations in Neuronal Hypoxia Models through Analysis of Gene Expression

  • Hwang, Joo-Won;Shin, Gil-Cho;Moon, Il-Su
    • The Journal of Korean Medicine
    • /
    • v.35 no.4
    • /
    • pp.36-51
    • /
    • 2014
  • Objectives: cDNA microarray is an effective method to snapshot gene expression. Functional clustering of gene expressions can identify herbal medicine mechanisms. Much microarray data is available for various herbal medicines. This study compares regulated genes with herbal medicines to evaluate the nature of the drugs. Methods: Published microarray data were collected. Total RNAs were prepared from dissociated hippocampal dissociate cultures which were given hypoxic shock in the presence of each herbal medicine. Up- or downregulated genes higher than Global M value 0.5 were selected, clustered in functional groups, and compared with various herbal treatments. Results: 1. Akt2 was upregulated by Acorus gramineus SOLAND, Arisaema amurense var. serratum $N_{AKAI}$ and Coptis chinensis $F_{RANCH}$, and they belong to Araceae herb. 2. Nf-${\kappa}b1$, Cd5, $Gn{\gamma}7$ and Sgne1 were upregulated by Arisaema amurense var. serratum $N_{AKAI}$, Coptis chinensis $F_{RANCH}$ and Rheum coreanum $N_{AKAI}$. 3. Woohwangcheongsim-won, Sohaphyang-won and Scutellaria baicalensis $G_{EORGI}$ downregulated Scp2 and upregulated Tsc2. Woohwangcheongsim-won and Sohaphyang-won upregulated Hba1 and downregulated Myf6. 4. Sohaphyang-won and Scutellaria baicalensis $G_{EORGI}$ downregulated Slc12a1. 5. Woohwangcheongsim-won and Arisaema amurense var. serratum $N_{AKAI}$ upregulated $Rar{\alpha}$, Woohwangcheongsim-won and Coptis chinensis $F_{RANCH}$ downregulated Rab5a and $Pdgfr{\alpha}$, and Woohwangcheongsim-won and Rheum coreanum $N_{AKAI}$ upregulated $Plc{\gamma}1$ and downregulated Pla2g1b and Slc10a1. Conclusions: By clustering microarray, genes are commonly identified to be either up- or downregulated. These results will provide new information to understand the efficacy of herbal medicines and to classify them at the molecular level.

The Effects of Galgunhwanggumhwangryun-tang on Glucose and Energy Metabolism in C2C12 Myotubes (C2C12 골격근 세포에서 갈근황금황련탕의 당 대사 및 에너지 조절 효과)

  • Jihong Oh;Song-Yi Han;Soo Kyoung Lim;Hojun Kim
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.22 no.2
    • /
    • pp.93-101
    • /
    • 2022
  • Objectives: This study aimed to observe the anti-diabetic effect and underlying mechanisms of Galgunhwanggumhwangryun-tang (GHH; Gegen-Qinlian-decoction) in the C2C12 myotubes. Methods: GHH (1.0 mg/ml) or metformin (0.75 mM) or insulin (100 nM) were treated in C2C12 myotubes after 4 days differentiation. The glucose uptake was assessed by 2-[N-(7-160 nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose uptake by C2C12 cells. The expression of adenosine monophosphate-activated protein kinase (AMPK) and phosphorylation AMPK (pAMPK) were measured by western blot. We also evaluated gene expression of glucose transporter type 4 (Slc2a4, formerly known as GLUT4), glucokinase (Gk), carnitine palmitoyltransferase IA (Cpt1a), nuclear respiratory factors 1 (Nrf1), mitochondrial transcription factor A (Tfam), and peroxisome proliferator-activated receptor γ coactivator 1α (Ppargc1a) by quantitative real-time polymerase chain reaction. Results: GHH promoted glucose uptake in C2C12 myotubes. The expression of AMPK protein, which plays an essential role in glucose metabolism, was increased by treatment with GHH. GHH treatment tended to increase gene expression of Slc2a4, Gk, and Nrf1 but was not statistically significant. However, GHH significantly improved Tfam and Ppargc1a gene expression in C2C12 myotubes. Conclusions: In summary, GHH treatment promoted glucose uptake in C2C12 myotubes. We suggest that these effects are associated with increased gene expression involved in mitochondrial biosynthesis and oxidative phosphorylation, such as Tfam and Ppargc1a, and increased expression of AMPK protein.

A Case of Gitelman Syndrome Presented with Epileptic Seizure (간질 발작으로 내원하여 진단된 Gitelman 증후군 1례)

  • Park Jee-Min;Kim Jeong-Tae;Shin Jae-Il;Kim Heung-Dong;Kim Tae-Young;Cheong Hae-Il;Lee Jae-Seung
    • Childhood Kidney Diseases
    • /
    • v.8 no.1
    • /
    • pp.68-73
    • /
    • 2004
  • Both Gitelman syndrome and Bartter syndrome are autosomal recessively inherited renal tubular disorders characterized by hypokalemic metabolic alkalosis, salt wasting and normal to low blood pressure. Gitelman syndrome is caused by mutations in the thiazide-sensitive Na-Cl cotransporter (NCCT) and distinguished from Bartter syndrome, which is associated with mutations of several genes, by the presence of hypomagnesemia and hypocalciuria. In most of the patients with Gitelman syndrome, the disease manifests with transient episodes of muscular weakness and tetany in the adult period, but, often, is asymptomatic. We report here an 11 years-old female with Gitelman syndrome who presented with aggravation of epileptic seizure. The diagnostic work-up showed typical clinical features of metabolic alkalosis, hypokalemia, hypomagnesemia and hypocalciuria. We also identified a heterozygote mutation($^{642}$CGC(Arg)>TGC(Cys)) and an abnormal splicing in the SLC12A3 gene encoding NCCT.

  • PDF

Salt-sensitive genes and their relation to obesity (소금민감성유전자와 비만)

  • Cheon, Yong-Pil;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.50 no.3
    • /
    • pp.217-224
    • /
    • 2017
  • Purpose: Although it is well known thatmortality and morbidity due to cardiovascular diseases are higher in salt-sensitive subjects than in salt-resistant subjects, their underlying mechanisms related to obesity remain unclear. Here, we focused on salt-sensitive gene variants unrelated to monogenic obesity that interacted with sodium intake in humans. Methods: This review was written based on the modified $3^rd$ step of Khans' systematic review. Instead of the literature, subject genes were based on candidate genes screened from our preliminary Genome-Wide Association Study (GWAS). Finally, literature related to five genes strongly associated with salt sensitivity were analyzed to elucidate the mechanism of obesity. Results: Salt sensitivity is a measure of how blood pressure responds to salt intake, and people are either salt-sensitive or salt-resistant. Otherwise, dietary sodium restriction may not be beneficial for everyone since salt sensitivity may be associated with inherited susceptibility. According to our previous GWAS studies, 10 candidate genes and 11 single nucleotide polymorphisms (SNPs) associated with salt sensitivity were suggested, including angiotensin converting enzyme (ACE), ${\alpha}$-adducin1 (ADD1), angiotensinogen (AGT), cytochrome P450 family 11-subfamily ${\beta}$-2 ($CYP11{\beta}$-2), epithelial sodium channel (ENaC), G-protein b3 subunit (GNB3), G protein-coupled receptor kinases type 4 (GRK4 A142V, GRK4 A486V), $11{\beta}$-hydroxysteroid dehydrogenase type-2 (HSD $11{\beta}$-2), neural precursor cell-expressed developmentally down regulated 4 like (NEDD4L),and solute carrier family 12(sodium/chloride transporters)-member 3 (SLC 12A3). We found that polymorphisms of salt-sensitive genes such as ACE, $CYP11{\beta}$-2, GRK4, SLC12A3, and GNB3 may be positively associated with human obesity. Conclusion: Despite gender, ethnic, and age differences in genetics studies, hypertensive obese children and adults who are carriers of specific salt-sensitive genes are recommended to reduce their sodium intake. We believe that our findings can contribute to the prevention of early-onset of chronic diseases in obese children by facilitating personalized diet-management of obesity from childhood to adulthood.

Identification of Gene-based Potential Biomarkers for Cephalexin-induced Nephrotoxicity in Mice

  • Park, Han-Jin;Oh, Jung-Hwa;Hwang, Ji-Yoon;Lim, Jung-Sun;Jeong, Sun-Young;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Cephalexin, one of most widely prescribed cephalosporin, has been reported to cause acute renal failure as a side effect in human and experimental animals. Although numerous animal studies have been reported for the cephalosporin nephrotoxicity, the molecular and cellular nephrotoxic mechanisms of cephalexin are still unknown. This investigation evaluated the time-dependent gene expression profile of kidney in mouse during cephalexin induced nephrotoxicity. C57BL/6 female mice were administered either saline or 1,000 mg/kg cephalexin intraperitoneally. Mice were sacrificed at 3, 6, and 24 hr after administration. Blood biochemical and histopathological results indicated cephalexin induced nephrotoxicity. Microarray experiment carried out using Affymetrix $GeneChip^{(R)}$. There were 198 informative genes that were significantly expressed >5-fold versus control at 3, 6, and 24 hr (p<0.01), of which 156 and 42 were up-and down-regulated, respectively. Major classes of up-regulated genes at 3, 6 hr included those involved in MAPK/Jak-STAT signaling pathway and immune response such as cytokine-cytokine receptor interaction and complement and coagulation cascades. At 24 hr, up-regulated genes were mainly involved in regeneration/repair and immune response; down-regulated genes were generally associated with transporters and intermediary metabolism. Among the up-regulated genes at 24 hr, several potential biomarkers on nephrotoxicity such as Kim-1, Fga, Timp1, and Slc34a2 were clustered in a same category. In addition, Tnfrsf12a and Lcn2 which were consistently up-regulated (>5 fold) were also included as potential biomarkers. These results may provide clues for elucidating the mechanism of cephalexin induced nephrotoxicity and evaluating potential biomarkers to assess nephrotoxicity.

A case of glycogen storage disease type Ib (당원병 1b 형 1례)

  • Kim, Moon-Sun;Park, Jae-Bok;Ki, Chang-Seok;Kim, Jin-Kyung
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.12
    • /
    • pp.1383-1387
    • /
    • 2009
  • We report a case of an 18-month-old girl with glycogen storage disease type Ib (GSD Ib). Her neutrophil counts had gradually decreased to less than $500/{\mu}L$ by the age of 3 years. However, there were no recurrent bacterial infections. Mutation analysis of the glucose-6-phosphate translocase (G6PT) gene revealed a compound heterozygous missense mutation (Ala148Val/Gly273Asp).