• 제목/요약/키워드: SLA violation

검색결과 6건 처리시간 0.022초

Energy and Service Level Agreement Aware Resource Allocation Heuristics for Cloud Data Centers

  • Sutha, K.;Nawaz, G.M.Kadhar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5357-5381
    • /
    • 2018
  • Cloud computing offers a wide range of on-demand resources over the internet. Utility-based resource allocation in cloud data centers significantly increases the number of cloud users. Heavy usage of cloud data center encounters many problems such as sacrificing system performance, increasing operational cost and high-energy consumption. Therefore, the result of the system damages the environment extremely due to heavy carbon (CO2) emission. However, dynamic allocation of energy-efficient resources in cloud data centers overcomes these problems. In this paper, we have proposed Energy and Service Level Agreement (SLA) Aware Resource Allocation Heuristic Algorithms. These algorithms are essential for reducing power consumption and SLA violation without diminishing the performance and Quality-of-Service (QoS) in cloud data centers. Our proposed model is organized as follows: a) SLA violation detection model is used to prevent Virtual Machines (VMs) from overloaded and underloaded host usage; b) for reducing power consumption of VMs, we have introduced Enhanced minPower and maxUtilization (EMPMU) VM migration policy; and c) efficient utilization of cloud resources and VM placement are achieved using SLA-aware Modified Best Fit Decreasing (MBFD) algorithm. We have validated our test results using CloudSim toolkit 3.0.3. Finally, experimental results have shown better resource utilization, reduced energy consumption and SLA violation in heterogeneous dynamic cloud environment.

SLA 통합 분석 시스템의 설계 (Desigin of SLA Analysis System)

  • 박노삼;이길행
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.225-226
    • /
    • 2006
  • A service level agreement (SLA) is a formal contract between a service provider and a subscriber that contains detailed technical specifications called service level specifications (SLSs). In this paper, we propose SLA data analysis system which provides an effective decision-making information to network service provider. The SLA data analysis system executes trend analysis and statistics analysis using SLA violation and refund information. The analysis results are presented in many ways such as tables, graphs.

  • PDF

An Anti-Overload Model for OpenStack Based on an Effective Dynamic Migration

  • Ammar, Al-moalmi;Luo, Juan;Tang, Zhuo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4165-4187
    • /
    • 2016
  • As an emerging technology, cloud computing is a revolution in information technology that attracts significant attention from both public and private sectors. In this paper, we proposed a dynamic approach for live migration to obviate overloaded machines. This approach is applied on OpenStack, which rapidly grows in an open source cloud computing platform. We conducted a cost-aware dynamic live migration for virtual machines (VMs) at an appropriate time to obviate the violation of service level agreement (SLA) before it happens. We conducted a preemptive migration to offload physical machine (PM) before the overload situation depending on the predictive method. We have carried out a distributed model, a predictive method, and a dynamic threshold policy, which are efficient for the scalable environment as cloud computing. Experimental results have indicated that our model succeeded in avoiding the overload at a suitable time. The simulation results from our solution remarked the very efficient reduction of VM migrations and SLA violation, which could help cloud providers to deliver a good quality of service (QoS).

Services Quality Improvement through Control Management Cloud-Based SLA

  • Abel Adane
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.89-94
    • /
    • 2023
  • Cloud-based technology is used in different organizations around the world for various purposes. Using this technology, the service providers provide the service mainly SaaS, PaaS and while the cloud service consumer consumes the services by paying for the service they used or accessed by the principle of "pay per use". The customer of the services can get any services being at different places or locations using different machines or electronic devices. Under the conditions of being well organized and having all necessary infrastructures, the services can be accessed suitably. The identified problem in this study is that cloud providers control and monitor the system or tools by ignoring the calculation and consideration of various faults made from the cloud provider side during service delivery. There are currently problems with ignoring the consumer or client during the monitoring and mentoring system for cloud services consumed at the customer or client level by SLA provisions. The new framework was developed to address the above-mentioned problems. The framework was developed as a unified modeling language. Eight basic components are used to develop the framework. For this research, the researcher developed a prototype by using a selected cloud tool to simulate and java programming language to write a code as well as MySQL to store data during SLA. The researcher used different criteria to validate the developed framework i.e. to validate SLA that is concerned with a cloud service provider, validate what happened when the request from the client-side is less than what is specified in SLA and above what is specified in SLA as well as implementing the monitoring mechanism using the developed Monitoring component. The researcher observed that with the 1st and 3rd criteria the service level agreement was violated and this indicated that if the Service level agreement is monitored or managed only by cloud service prover, there is a violation of LSA. Therefore, the researcher recommended that the service level agreement be managed by both cloud service providers and service consumers in the cloud computing environment.

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

VM Scheduling for Efficient Dynamically Migrated Virtual Machines (VMS-EDMVM) in Cloud Computing Environment

  • Supreeth, S.;Patil, Kirankumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.1892-1912
    • /
    • 2022
  • With the massive demand and growth of cloud computing, virtualization plays an important role in providing services to end-users efficiently. However, with the increase in services over Cloud Computing, it is becoming more challenging to manage and run multiple Virtual Machines (VMs) in Cloud Computing because of excessive power consumption. It is thus important to overcome these challenges by adopting an efficient technique to manage and monitor the status of VMs in a cloud environment. Reduction of power/energy consumption can be done by managing VMs more effectively in the datacenters of the cloud environment by switching between the active and inactive states of a VM. As a result, energy consumption reduces carbon emissions, leading to green cloud computing. The proposed Efficient Dynamic VM Scheduling approach minimizes Service Level Agreement (SLA) violations and manages VM migration by lowering the energy consumption effectively along with the balanced load. In the proposed work, VM Scheduling for Efficient Dynamically Migrated VM (VMS-EDMVM) approach first detects the over-utilized host using the Modified Weighted Linear Regression (MWLR) algorithm and along with the dynamic utilization model for an underutilized host. Maximum Power Reduction and Reduced Time (MPRRT) approach has been developed for the VM selection followed by a two-phase Best-Fit CPU, BW (BFCB) VM Scheduling mechanism which is simulated in CloudSim based on the adaptive utilization threshold base. The proposed work achieved a Power consumption of 108.45 kWh, and the total SLA violation was 0.1%. The VM migration count was reduced to 2,202 times, revealing better performance as compared to other methods mentioned in this paper.