• Title/Summary/Keyword: SIS316L 316L

Search Result 2, Processing Time 0.02 seconds

Corrosion Resistance of Super Duplex Stainless Steel (수퍼 2상 스테인리스강의 부식 저항성에 관한 연구)

  • 강흥주;남기우;안석환;강창룡;도재윤;박인덕
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.40-46
    • /
    • 2003
  • The corrosion resistance of super duplex stainless steel on both its fibrous and dispersed phase was investigated. These structures consist of various volume fraction and distribution of austenite structure, which were obtained by changing the heat treatment temperature and cycle. The fibrous phase had higher austenite volume fraction than that of the dispersed phase at the same temperature. Corrosion resistance of super duplex stainless steel was evaluated through an immersion test and an impingement test, using 35% HCI and sea water, respectively. Super duplex stainless steel was compared with STS316L and STS304. The corrosion resistance of super duplex stainless steel was superior to ST316L and STS304. The dispersed phase of super duplex stainless steel was more stabilized than the fibrous phase in corrosion. The magnitude of corrosion rate was in order STS304, STS316L, fibrous phase of super duplex stainless steel and dispersed phase of super duplex stainless steel.

Fatigue Behavior of STS316L Weldments and Degradation Characteristic Evaluation by Ultrasonic Test (STS316L 용접부의 피로거동 및 초음파시험에 의한 열화특성 평가)

  • Nam, Ki-Woo;Park, So-Soon;Ahn, Seok-Hwan;Do, Jae-Yoon;Park, In-Duck
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.156-164
    • /
    • 2003
  • STS316L had been used as the structural material for energy environmental facilities, because austenite stainless steels like 316L have superior mechanical properties of which toughness, ductility, corrosion resistant and etc. However, those welded structures are receiving severe damage due to increasing of the aged degradation. Most studies until now have been carried out against fatigue behaviors of weldments, and were not well studied on nondestructive evaluation methods. In this study, the fatigue crack propagation behavior of STS316L weldment usually used for vessels of the nuclear power plant was investigated. Also, the degradation characteristics of 316L stainless steel weldments were evaluated by the ultrasonic parameter such as ultrasonic velocity, attenuation factor and time-frequency analysis. The results of this study can be used as a basic data for the prediction of the fatigue crack life of weldments structures without disjointing or stopping service of structures in service.