• 제목/요약/키워드: SIME(SIngle Machine Equivalent)

검색결과 7건 처리시간 0.018초

온라인 과도안정도 판정을 위한 상정사고 고속 스크리닝 알고리즘 개발 (A Fast Screening Algorithm for On-Line Transient Stability Assessment)

  • 이종석;양정대;이병준;권세혁;남해곤;추진부;이경극;윤상현;박병철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권5호
    • /
    • pp.225-233
    • /
    • 2001
  • SIME(SIngle Machine Equivalent) method has been recognized as a useful tool to determine transient stability of power systems. In this paper, SIME method is used to develop the KEPCO transient stability assessment (TSA) tool. A new screening algorithm that can be implemented in SIME method is proposed. The salient feature of the proposed screening algorithm is as follows. First, critical generators are identified by a new index in the early stage of the time domain simulation. Thus, computational time required to find OMIB(One Machine Infinite Bus) can be reduced significantly. Second, clustering critical machines can be performed even in very stable cases. It enables to be avoid extra calculation of time trajectory that is needed in SIME for classifying the stable cases. Finally, using power-angle trajectory and subdividing contingency classification have improved the screening capability. This algorithm is applied to the fast TSA of the KEPCO system.

  • PDF

A Contingency Screening Algorithm Using SIME for Transient Stability Assessment of the KEPCO System

  • Lee, J.;Lee, B.;Kwon, S.H.;Nam, H.K.;Ahn, T.;Choo, J.B.;Yi, K.
    • Journal of KIEE
    • /
    • 제11권1호
    • /
    • pp.55-61
    • /
    • 2001
  • SIME(Single Machine Equivalent) method has been recognized as a useful tool to determine transient stability of power system. In this paper, SIME method is used to develop the KEPCO transient stability assessment (TSA) tool. A new screening algorithm that can be generators are identified by a new index in the early stage of the time domain simulation. Thus, computational time require to find OMIB(One Machine Infinite Bus) can be reduced significantly. Second, clustering critical machines can be performed even in very stable cases. It enables to be avoid extra calculation of time trajectory that is needed in SIME for classifying the stable cases. This algorithm is applied to the fast TSA of the KEPCO system in the year of 2010.

  • PDF

개선된 SIME법을 이용한 과도 안정도 평가 (Transient Stability Assessment Using Improved SIME)

  • 이종석;안태형;양정대;이병준;권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.258-260
    • /
    • 1999
  • The Single Machine Equivalent(SIME) is a hybrid method resulting from the coupling of a time-domain program with the equal-area criterion. This paper presents the efficient filtering algorithm using improved SIME for Transient Stability Assessment. The main feature of the method is cascading contingency filtering. First contingency filtering is conducted by using the first-swing stability of equivalent One Machine Infinite Bus(OMIB) system. This stability is evaluated by checking its time trajectory. Selected cases through the first step are assessed on the second step using SIME under the detailed model of power systems. The efficiency of the algorithm is tested on PSS/E test system.

  • PDF

온라인 동적 안전도평가 시스템의 개발 (Development of On-line Dynamic Security Assessment System)

  • 남해곤;송성근;심관식;문채주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.73-76
    • /
    • 2001
  • This paper presents a new systematic contingency selection, screening and ranking method for on-line transient security assessment. Transient stability of a particular generator is influenced most by fault near it. Fault at the transmission lines adjacent to the generators are selected as contingency. Two screening methods are developed using the sensitivity of modal synchronizing torque coefficient and computing an approximate critical clearing time(CCT) without time simulation. The first method, which considers only synchronizing power, may mislead in some cases since it does not consider the acceleration power. The approximate CCT method, which consider both the acceleration and deceleration power, worked well. Finally the Single Machine Equivalent(SIME) method is implemented using IPLAN of PSS/E for detailed stability analysis.

  • PDF

A Novel SIME Configuration Scheme Correlating Generator Tripping for Transient Stability Assessment

  • Oh, Seung-Chan;Lee, Hwan-Ik;Lee, Yun-Hwan;Lee, Byong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1798-1806
    • /
    • 2018
  • When a contingency occurs in a large transmission route in a power system, it can generate various instabilities that may lead to a power system blackout. In particular, transient instability in a power system needs to be immediately addressed, and preventive measures should be in place prior to fault occurrence. Measures to achieve transient stability include system reinforcement, power generation restriction, and generator tripping. Because the interpretation of transient stability is a time domain simulation, it is difficult to determine the efficacy of proposed countermeasures using only simple simulation results. Therefore, several methods to quantify transient stability have been introduced. Among them, the single machine equivalent (SIME) method based on the equal area criterion (EAC) can quantify the degree of instability by calculating the residual acceleration energy of a generator. However, method for generator tripping effect evaluation does not have been established. In this study, we propose a method to evaluate the effect of generator tripping on transient stability that is based on the SIME method. For this purpose, the measures that reflect generator tripping in the SIME calculation are reviewed. Simulation results obtained by applying the proposed method to the IEEE 39-bus system and KEPCO system are then presented.

과도안전도 평가를 위한 개선된 상정고장 선택 및 여과 알고리즘 개발 (Development of Enhanced Contingency Screening and Selection Algorithm for On-line Transient Security Assessment)

  • 김용학;송성근;남해곤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권6호
    • /
    • pp.306-314
    • /
    • 2005
  • In this paper, a new approach that is based on EEAC & only with network solutions for CS&S in the transient stability assessment is developed. The proposed CS&S algorithm in conjunction with EEAC to include the capability of performing on-line TSA without TDS is used to calculate the critical clearing time for stability index. In this algorithm, all generators are represented by classical models and all loads are represented by constant impedance load models. The accelerating & synchronizing power coefficient as an index is determined at its disturbance through solving network equation directly. As mentioned above, a new index for generator is generally used to determine the critical generators group. The generator rotor angle is fixed for non-critical generators group, but has equal angle increments for critical generators group. Finally, the critical clearing time is calculated from the power-angle relationship of equivalent OMIB system. The proposed CS&S algorithm currently being implemented is applied to the KEPCO system. The CS&S result was remarkably similar to TSAT program and SIME. Therefore, it was found to be suitable for a fast & highly efficient CS&S algorithm in TSA. The time of CS&S for the 139 contingencies using proposed CS&S algorithm takes less than 3 seconds on Pentium 4, 3GHz Desktop.

과도안정도 측면에서의 발전 재배분을 이 용한 예방제어 (Preventive Control Using Generation Rescheduling for Transient Stability)

  • 이종석;이병준;권세혁;최선규;남해곤;추진부;전동훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권6호
    • /
    • pp.262-268
    • /
    • 2002
  • Preventive control has to solve two important problems. The first is fast and accurate severity assessment of instability originated from the occurrence of a dangerous contingency. The second is to choose an action able to stabilize it. In this paper we assess contingencies in power systems using PASF(Power Angle Shape Filtering) and control power systems by a generation rescheduling. The control action stabilize the whole set of harmful contingencies simultaneously. Note that conventional time-domain transient stability methods can hardly tackle preventive control. So, we study the preventive control using off-line method. The proposed method is applied to prevent and to correct loss of synchronism of all the generators in a operating systems data.