• 제목/요약/키워드: SILO

검색결과 183건 처리시간 0.026초

지중 박스구조물에 작용하는 토압 (Earth Pressure on the Underground Box Structure)

  • 이상덕
    • 한국지반공학회논문집
    • /
    • 제16권1호
    • /
    • pp.243-250
    • /
    • 2000
  • 지하박스구조물을 개착식으로 시공할 때에는 토공을 최소화하여 지반을 굴착하고 구조물을 설치한 후에 되메움하므로 지반굴착면과 구조물사이의 되메움 공간이 크지 않다. 따라서 구조물의 상부슬래브와 외측벽에 작용하는 토압의 크기와 분포형상은 구조물의 거동에 큰 영향을 미치며, 되메움 폭과 굴착면의 형상 및 토피두께 등에 따라 다르다. 본 연구에서는 원지반을 굴착한 후 구조물을 설치하고 잔여 굴착공간을 되메움하여 지하박스 구조물을 건설하는 시공 과정을 FLAC을 이용하여 수치해석하고 그 결과를 Marston-Spangler등의 이론과 silo 이론 및 모형실험 결과와 비교하였다. 결과적으로 상부슬래브에 작용하는 연직토압이 슬래브중앙에서는 토피하중과 같으나 구조물의 가장자리에서는 되메움 폭과 굴착면의 경사 및 토피의 두께 등에 따라 이보다 작거나 커졌고, 외측벽에 작용하는 수평토압은 정지토압보다 작았으며, 깊이에 따라 비선형적으로 증가하였다.

  • PDF

월성 중저준위 처분시설 다중사일로 안정성 평가 모델 - 1단계: 모델개발 (Multiple-Silo Performance Assessment Model for the Wolsong LILW Disposal Facility in Korea - PHASE I: Model Development)

  • 임두현;김지연;박주완
    • 방사성폐기물학회지
    • /
    • 제9권2호
    • /
    • pp.99-105
    • /
    • 2011
  • 중저준위 방사성폐기물 처분장의 안전성 평가를 위하여 지하 사일로와 그 주변의 굴착손상영 역 (EDZ) 및 단열암반을 고려한 지하수유동해석과 핵종이동해석의 통합모델을 개발하였다. 사일로를 다중방벽개념으로 고려하여 사일로를 구성하는 3개의 특성지역 (waste, buffer, concrete)으로 구분하여 해석하였고, EDZ는 사일로 주변과 건설운영 터널 주변의 손상영역을 고려하였다. 단열암반의 불균일성은 분리단열 (discrete fractures)로 부터 해석된 불균일한 지하수 유속계로 도출하였고, 그 결과를 핵종의 이동경로를 모사하는데 사용하였다. 현 모델은 핵종누출에 따른 사일로 배치의 최적화와 안전성의 정량화를 도출하는데 사용가능하다.

Evaluation method and experimental study on seismic performance of column-supported group silo

  • Jia Chen;Yonggang Ding;Qikeng Xu;Qiang Liu;Yang Zhou
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.577-590
    • /
    • 2024
  • Considering the Column-Supported Group Silos (CSGSs) often arranged by rows in practical applications, earthquake responses will be affected by group effect. Since group effect presenting uncertainties, establishing the analytic model and evaluating characteristics of CSGSs seems necessary. This study aimed at providing a simplified method to evaluate seismic performances of the CSGSs. Firstly, the CSGSs with different storage granule heights are used as numerical examples to derive the base shear formula for three-particle dynamic analytical model. Then, the base shear distribution coefficient is defined as the group effect index. The simplified calculation method of the group silos based on the distribution coefficients is proposed. Finally, based on the empty, half, and full granular storage conditions, the empirical design parameters for the group silos system are given by combining finite element simulation with shaking table test. The group effect of storage granule heights of group silos on its frequency and base shear are studied by comparative analysis between group silos and independent single silo. The results show that the frequency of CSGSs decreases with the increasing weight of the stored granule. The connection between the column top and silo bottom plate is vulnerable, and structural measures should be strengthened to improve its damage resistance. In case of different storage granule heights, distribution coefficients are effective to reconstruction the group effect. The complex calculations of seismic response for CSGSs can be avoided by adopting the empirical distribution coefficients obtained in this study. The proposed method provides a theoretical reference for evaluation on the seismic performances of the CSGSs.

우리나라 결정질암내 동굴처분장에 대한 수치해석 (A Numerical analysis of Underground Repository Cavern in Korean Crystalline rocks)

  • 윤건신
    • 지질공학
    • /
    • 제1권1호
    • /
    • pp.68-84
    • /
    • 1991
  • A numerical analysis using Universal Distinct Element Code program for the nuclear waste disposal cavern has been performed for a typical Korean crystalline rock condition with same geometry of Swedish low and intermediate nuclear waste disposal repository(S.F.R). The stress concentration, displacement and safety factor for the typical single cross section of cavern, 5 caverns and a silo are analyzed.

  • PDF

The use of ferrocement in the construction of squat grain silos

  • Topcuoglu, Kivanc;Unal, Halil Baki
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.53-68
    • /
    • 2016
  • In this study, an investigation is made from the statics and economic aspects of the possibility of using the composite material ferrocement on the surfaces of squat cylindrical grain silos. For this purpose, the geometry of two model silos, each of height 5 m and diameter 5 m and 12.5 m, was designed. Five different reinforced plates of 10 and 20 mm thickness were produced to research the most suitable ferrocement plates to be used on the surface of these silos. Most durable reinforcement type for covering the silo surface was determined by pressure and bending tests. Grade 30 and Grade 55 steel plates were also considered for use in covering steel-coated silos. In the statics analysis performed with SAP2000, the least plate thicknesses needed for silos surfaced with Grade 30 and Grade 55 steel were found to be 6.20 mm and 4.70 mm respectively for silos of diameter 5 m, and 6.70 mm and 5.00 mm for silos of diameter 12.5 m. In the economic analysis, it was found that 20 mm thick Type 4 (with a wire diameter of 0.30 mm and a mesh aperture of $2mm{\times}2mm$ square type) reinforced ferrocement surfacing material was 5.6-6.1 times more economical than Grade 30 steel surfacing material and 4.4-4.7 times more economical than using Grade 55 steel. These results show that ferrocement can be used in place of steel from the point of view both of statics and economy.

지반과 구조물 사이의 상호작용을 고려한 농업용 사이로의 해석에 관한 연구(IV) -제 4 보 관행설계법과의 비교 (An Analysis of the Farm Silo Supported by Ground)

  • 조진구;조현영
    • 한국농공학회지
    • /
    • 제30권2호
    • /
    • pp.44-54
    • /
    • 1988
  • This study was carried out to investigate the applicability of the conventional design method for ground supported circular cylindrical shell structures. For this purpose, the ensiled farm silo was adopted as a model structures. Herein, the conventional design method was based on the assumption that such structures are clamped at the bottom edges or the ground pressure is independent of the deflection at the surface. In the present paper, the applicability of above assumption was checked out by comparison with an exact method considering soil-structure interaction. Some results of numerical calculation show us ; When the ground is very hard, for example Winkler's constant k is larger than 100 kg / cm$^2$ / cm, or the bottom plate of structures has a infinitely stiffness, for example the bottom plate thickness is larger than 100 cm, the sectional forces, obtained from the conventional method at any wall of structures resting on an elastic foundation, can used for design purpose. Therefore, if the above condition is satisfied then the conventional assumptions can be justified for the design purpose. In this case, the assumption that such structures are fixed at the lower edges was more realistic than the assumption that the reaction pressure acting on structures is uniformly disributed since the accuracy of results of the analysis by the former assumption was higher than that obtained from the latter assumption. But the sectional forces in the bottom plate resting on ground directly could not be evaluate correctly by the conventional method.

  • PDF

안정사면에 인접한 옹벽에 작용하는 수평토압 (Lateral Pressure on Retaining Wall Close to Stable Slope)

  • 정성교;정진교;이만렬
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.19-34
    • /
    • 1997
  • Classical earth pressure theories normally assume that ground condition remains uniform for considerable distance from the wall, and that the movement of the wall is enough to result in the development of an active pressure distribution. In the case of many low gravity walls in cut, constructed, for example, by using gabions or cribs, this is not commonly the case. In strong ground a steep temporary face will be excavated for reasons of economy, and a thin wedge of backfill will be placed behind the wall following its construetion. A designer then has the difficulty of selecting appropriate soil parameters and a reasonable method of calculating the earth pressure on the w리1. This paper starts by reviewing the existing solutions applicable to such geometry. A new silo and a wedge methods are developed for static and dynamic cases, and the results obtained from these are compared with two experimental results which more correctly mod el the geometry and strength of the wall, the fill, and the soil condition. Conclusions are drawn concerning both the magnitute and distribution of earth pressures to be supported by such walls.

  • PDF