• Title/Summary/Keyword: SIL (Safety Integrity Level)

Search Result 51, Processing Time 0.028 seconds

Reliability Analysis on Firewater Supply Facilities based on the Probability Theory with Considering Common Cause Failures (소방수 공급설비에 대한 공통원인고장을 고려한 확률론적 신뢰도 분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.76-85
    • /
    • 2003
  • In this study, we write down the definitions, their causes and the techniques of analysis as a theoretical consideration of common cause failures, and investigate the limitation and the importance of the common cause failures by applying to the analysis on the fire protection as a representative safety facility. As you can know in the reliability analysis, most impressive cause is the malfunctions of pumping operations; especially the common cause failure of two pumps is dominant. In other words, it is possible to assess system-reliability as twice as actual without CCF From these, CCF is extraordinarily important and the results are highly dependent on the CCF factor. And although it would increase with multiple installations, the reliability are not defined as linear with those multiplications. In addition, the differences in results due to the models for analysis are not significant, whereas the various sources of data produce highly different results. Therefore, we conclude that the reliabilities are dependent on the quality of the usable data much better than the variety of models. As a result, the basic and engineering device for the preventions of CCF of the multiple facilities is to design it as reliably as to design the fire-water pump. That is to say, we must assess those reliabilities using PFD whether they are appropriate to SIL (Safety Integrity Level) which is required for the reliability in SIS (Safety Instrumented System). The result of the analysis on the reliability of the fire-water supply with CCF shows that PFD is 3.80E-3, so that it cannot be said to be designed as safely as in the level of SIL5. However, without CCF, PFD is 1.82E-3 which means that they are designed as unsafely as before.

Railway Software Analysis Tool using Symbolic Execution Method (심볼릭 수행 방법을 이용한 철도 소프트웨어 코드분석 도구제안)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Shin, Duck-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.242-249
    • /
    • 2016
  • The railway system is being converted to the computer system from the existing mechanical device, and the dependency on software is being increased rapidly. Though the size and degree of complexity of software for railway system are slower than the development speed of hardware, it is expected that the size will be grown bigger gradually and the degree of complexity will be increased also. Accordingly, the validation of reliability and safety of embedded software for railway system was started to become influential as the important issue. Accordingly, various software test and validation activities are highly recommended in the international standards related railway software. In this paper, we presented a software coding analysis tool using symbolic execution for railway system, and presented its result of implementation.

A study on the statistical analysis and implications cases of obtaining international safety certification in safety critical railway products (안전성 중시 철도제품의 국제인증 획득 사례를 통한 통계적 분석 및 시사점에 관한 연구)

  • Choi, Yo Chul
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.114-121
    • /
    • 2021
  • Today, it is a time when self-help efforts are being made to increase the demand for international certification by domestic and foreign railway orderers and develop excellent railway systems for railway system and railway construction projects. Since 2011, cases of obtaining international certification related to the domestic railway system/products have been collected and analyzed through literature and Internet data and based on the analysis results, evaluation results on the acquisition of international certification in Korea are presented. Through these results, the government, research institutes, and industries will be practical reference materials for international certification-related work.

Sensor Technology Trends of the Railroad System (철도시스템의 센서기술 동향)

  • SHIN, Duck-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.326-330
    • /
    • 2015
  • The recent development of Sensor technology has broadened its applications to many fields of industry including railroad. The sensor technology enables the railroad system to monitor and control. This paper suggests the sensor based system design for evaluating and improving the reliability and safety of the ICT system. For this purpose, the reliability and the level of safety integrity of a general gateway have been predicted quantitatively and the supplementary design has been proposed for RAMS improvement. RAMS requirements for each life cycle stipulated in IEC 62278. RAMS activity is capable of producing significant and effective reductions in operation costs and time.

Study on Development of Inter-acceptability Requirements of System Safety (시스템안전의 상호수용에 대한 요구사항 도출 연구)

  • Shin, Duc-Ko;Kim, Gon-Yop;Oh, Seh-Chan;Yoon, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.707-710
    • /
    • 2011
  • System safety is defined as the state where the hazard risks due to internal system, interface, operation and maintenance are controlled as acceptable levels. It is represented and evaluated either with the risk level of each risk factor with the consideration of operation environments or with Safety Integrity Level (SIL) which is the system functional safety without considering application environments. The assessment results are issued in forms of certificates and they are reused in many cases. However, the conditions and restrictions for different application environments vary in each case, therefore, additional evaluation on the preconditions of assessment in comparison with the actual application environment must be carried out. For the area of train control, TR 50506-1 has been established based on the IEC 62425 (international standard for safety of train control system by RSSB) and EN 50129 (Europe standard) for the further assessment. In this paper, the analysis on TR 5056-1 has been conducted in depth. The purpose of the study is to determine the requirements for inter-acceptability including scope, procedures, principles, examination and suitability. The results can be utilized for the system safety maintenance when new devices or components are introduced in conventional systems.

  • PDF

Research on the Safety Improvement Method for the Company' s RAMS Management Business and Public Infrastructure

  • Lee, Jong-Beom;Cho, Jai-Rip
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.254-261
    • /
    • 2010
  • The increase in hazard level is attributed to the industrial hazard environment; complete national environmental hazards to human health include climate change. The damage level in Korea from 1993 to 2009 has exceeded the Increase In adverse environmental conditions. Priority areas of concern will include those risks that are most likely to occur and are expensive when they do take place such as accident or injury at a community pool. Therefore, in this paper, we suggest the System Engineering method for application to the railway RAMS. Recently, the requirement of high-integrity level of infrastructure has been deemed important. The systems level approach is defined through the assessment of the RAMS interactions between elements of complex system applications.

  • PDF

A Study on Hazard Analysis and Risk Assessment of Railway Signal System Using FTA/ETA Method (FTA/ETA 기법을 이용한 철도신호시스템의 위험 분석 및 위험성 평가에 관한 연구)

  • 백영구;박영수;이재훈;이기서
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.473-480
    • /
    • 2002
  • In this paper, it was proposed that hazard analysis and risk assessment about railway signal systems using FTA(Fault Tree Analysis) and ETA(Event Tree Analysis) one of the reliability analysis methods executed and output value based on the hazard baseline of CENELEC and EC 61508 producted, and also the SIL(Safety Integrity Level)/THR(Tolerable Hazard Rate) about the system set. On the basis of this principle, more systematic standardizations are required to operate railway system and in the future, we hope that safety and reliability of signal equipment will be better improved.

  • PDF

A Hazard Identification and Analysis for the Train Control System of Light Rail Transit (경량전철 열차제어시스템의 위험요인 분석)

  • 정의진;김양모
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.99-106
    • /
    • 2004
  • Train control system in LRT (Light Rail Transit) is developed as a part of "Light Rail Transit System Development Project". But there was no specific requirement representing the system safety. Because system safety must be ensured before the customization, we applied the system to a officially recognized specific procedure, such as "A Guideline to Ensure the Safety of Train Control System in Korea" that was officially announced by KNR (Korea National Railroad) in 2001. We should draw system safely requirement to guarantee system safety for the first time. In this paper, the hazard identification and analysis to derive the safety requirement on LRT train control system are carried out following the KNR guideline. To analyze hazard, we have to deduce system functions, identify related hazards, derive the effects of the hazards, analyze current risk, define the target risk of the system, and deduce the alternative plans to reduce the effects of the hazards. After the hazard analysis following the upper procedure, 30 hazards are identified and analysed. Especially detailed analysis on train collision that is a main hazard of the train control of system is specially carried out.

A Study on the Reliability/Safety assessment and improvement of USN Gateway for Train Control (열차제어를 위한 USN Gateway 신뢰성, 안전성 평가 및 향상에 관한 연구)

  • Sin, Duc-Ko;Jo, Hyun-Jeong;Shin, Kyeng-Ho;Song, Yong-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.5
    • /
    • pp.416-424
    • /
    • 2011
  • The recent development of USN (Ubiquitous Sensor Network) technology has broadened its applications to many fields of industry. The USN technology enables the system to monitor and control the status of distributed sensor nodes based on the low-powered communications. Applying the USN in the train control domain, the operational efficiency can be enhanced, where the reliability and the safety of the system are the key challenges. This paper suggests the system design for evaluating and improving the reliability and safety of the gateway, which is a USN component that manages the radio network among the sensors and collects the information from them. For this purpose, the reliability and the level of safety integrity of a general gateway have been predicted quantitatively and the supplementary design has been proposed for the selected week points. The verification on the reliability and the safety of the improved gateway according to the related standards has been followed. With the results of the study, the applicability of USN gateway for train control systems has been reviewed.

Analysis of S/W Test Coverage Automated Tool & Standard in Railway System (철도시스템 소프트웨어 테스트 커버리지 자동화 도구 및 기준 분석)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Shin, Seung-Kwon;Oh, Suk-Mun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4460-4467
    • /
    • 2010
  • Recent advances in computer technology have brought more dependence on software to railway systems and changed to computer systems. Hence, the reliability and safety assurance of the vital software running on the embedded railway system is going to tend toward very critical task. Accordingly, various software test and validation activities are highly recommended in the international standards related railway software. In this paper, we presented an automated analysis tool and standard for software testing coverage in railway system, and presented its result of implementation. We developed the control flow analysis tool estimating test coverage as an important quantitative item for software safety verification in railway software. Also, we proposed judgement standards due to railway S/W Safety Integrity Level(SWSIL) based on analysis of standards in any other field for utilizing developed tool widely at real railway industrial sites. This tool has more advantage of effective measuring various test coverages than other countries, so we can expect railway S/W development and testing technology of real railway industrial sites in Korea.