• Title/Summary/Keyword: SIFT Features

Search Result 115, Processing Time 0.02 seconds

Vision-based Obstacle Detection using Geometric Analysis (기하학적 해석을 이용한 비전 기반의 장애물 검출)

  • Lee Jong-Shill;Lee Eung-Hyuk;Kim In-Young;Kim Sun-I.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.8-15
    • /
    • 2006
  • Obstacle detection is an important task for many mobile robot applications. The methods using stereo vision and optical flow are computationally expensive. Therefore, this paper presents a vision-based obstacle detection method using only two view images. The method uses a single passive camera and odometry, performs in real-time. The proposed method is an obstacle detection method using 3D reconstruction from taro views. Processing begins with feature extraction for each input image using Dr. Lowe's SIFT(Scale Invariant Feature Transform) and establish the correspondence of features across input images. Using extrinsic camera rotation and translation matrix which is provided by odometry, we could calculate the 3D position of these corresponding points by triangulation. The results of triangulation are partial 3D reconstruction for obstacles. The proposed method has been tested successfully on an indoor mobile robot and is able to detect obstacles at 75msec.

A Comparison of 3D Reconstruction through the Passive and Pseudo-Active Acquisition of Images (수동 및 반자동 영상획득을 통한 3차원 공간복원의 비교)

  • Jeona, MiJeong;Kim, DuBeom;Chai, YoungHo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • In this paper, two reconstructed point cloud sets with the information of 3D features are analyzed. For a certain 3D reconstruction of the interior of a building, the first image set is taken from the sequential passive camera movement along the regular grid path and the second set is from the application of the laser scanning process. Matched key points over all images are obtained by the SIFT(Scale Invariant Feature Transformation) algorithm and are used for the registration of the point cloud data. The obtained results are point cloud number, average density of point cloud and the generating time for point cloud. Experimental results show the necessity of images from the additional sensors as well as the images from the camera for the more accurate 3D reconstruction of the interior of a building.

Fast Object Classification Using Texture and Color Information for Video Surveillance Applications (비디오 감시 응용을 위한 텍스쳐와 컬러 정보를 이용한 고속 물체 인식)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.140-146
    • /
    • 2011
  • In this paper, we propose a fast object classification method based on texture and color information for video surveillance. We take the advantage of local patches by extracting SURF and color histogram from images. SURF gives intensity content information and color information strengthens distinctiveness by providing links to patch content. We achieve the advantages of fast computation of SURF as well as color cues of objects. We use Bag of Word models to generate global descriptors of a region of interest (ROI) or an image using the local features, and Na$\ddot{i}$ve Bayes model for classifying the global descriptor. In this paper, we also investigate discriminative descriptor named Scale Invariant Feature Transform (SIFT). Our experiment result for 4 classes of the objects shows 95.75% of classification rate.

Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU (OpenCL 및 Embedded GPU를 이용한 영상 특징 추출 및 파노라마 영상 생성의 병렬화)

  • Kang, Seung Heon;Lee, Seung-Jae;Lee, Man Hee;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.316-328
    • /
    • 2014
  • In this paper, we parallelize the popular feature detection algorithms, i.e. SIFT and SURF, and its application to fast panoramic image generation on the latest embedded GPU. Parallelized algorithms are implemented using recently developed OpenCL as the embedded GPGPU software platform. We compare the implementation efficiency and speed performance of conventional OpenGL Shading Language and OpenCL. Experimental result shows that implementation on OpenCL has comparable performance with GLSL. Compared with the performance on the embedded CPU in the same application processor, the embedded GPU runs 3~4 times faster. As an example of using feature extraction, panorama image synthesis is performed on embedded GPU by applying image matching using detected features.

Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications (비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.12-20
    • /
    • 2011
  • In this paper, we propose an efficient object detection and classification algorithm for video surveillance applications. Previous researches mainly concentrated either on object detection or classification using particular type of feature e.g., Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Feature (SURF) etc. In this paper we propose an algorithm that mutually performs object detection and classification. We combinedly use heterogeneous types of features such as texture and color distribution from local patches to increase object detection and classification rates. We perform object detection using spatial clustering on interest points, and use Bag of Words model and Naive Bayes classifier respectively for image representation and classification. Experimental results show that our combined feature is better than the individual local descriptor in object classification rate.

Evaluation of Marker Images based on Analysis of Feature Points for Effective Augmented Reality (효과적인 증강현실 구현을 위한 특징점 분석 기반의 마커영상 평가 방법)

  • Lee, Jin-Young;Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.49-55
    • /
    • 2019
  • This paper presents a marker image evaluation method based on analysis of object distribution in images and classification of images with repetitive patterns for effective marker-based augmented reality (AR) system development. We measure the variance of feature point coordinates to distinguish marker images that are vulnerable to occlusion, since object distribution affects object tracking performance according to partial occlusion in the images. Moreover, we propose a method to classify images suitable for object recognition and tracking based on the fact that the distributions of descriptor vectors among general images and repetitive-pattern images are significantly different. Comprehensive experiments for marker images confirm that the proposed marker image evaluation method distinguishes images vulnerable to occlusion and repetitive-pattern images very well. Furthermore, we suggest that scale-invariant feature transform (SIFT) is superior to speeded up robust features (SURF) in terms of object tracking in marker images. The proposed method provides users with suitability information for various images, and it helps AR systems to be realized more effectively.

Broken Detection of the Traffic Sign by using the Location Histogram Matching

  • Yang, Liu;Lee, Suk-Hwan;Kwon, Seong-Geun;Moon, Kwang-Seok;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.312-322
    • /
    • 2012
  • The paper presents an approach for recognizing the broken area of the traffic signs. The method is based on the Recognition System for Traffic Signs (RSTS). This paper describes an approach to using the location histogram matching for the broken traffic signs recognition, after the general process of the image detection and image categorization. The recognition proceeds by using the SIFT matching to adjust the acquired image to a standard position, then the histogram bin will be compared preprocessed image with reference image, and finally output the location and percents value of the broken area. And between the processing, some preprocessing like the blurring is added in the paper to improve the performance. And after the reorganization, the program can operate with the GPS for traffic signs maintenance. Experimental results verified that our scheme have a relatively high recognition rate and a good performance in general situation.

Filtering Feature Mismatches using Multiple Descriptors (다중 기술자를 이용한 잘못된 특징점 정합 제거)

  • Kim, Jae-Young;Jun, Heesung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • Feature matching using image descriptors is robust method used recently. However, mismatches occur in 3D transformed images, illumination-changed images and repetitive-pattern images. In this paper, we observe that there are a lot of mismatches in the images which have repetitive patterns. We analyze it and propose a method to eliminate these mismatches. MDMF(Multiple Descriptors-based Mismatch Filtering) eliminates mismatches by using descriptors of nearest several features of one specific feature point. In experiments, for geometrical transformation like scale, rotation, affine, we compare the match ratio among SIFT, ASIFT and MDMF, and we show that MDMF can eliminate mismatches successfully.

Human hand gesture identification framework using SIFT and knowledge-level technique

  • Muhammad Haroon;Saud Altaf;Zia-ur- Rehman;Muhammad Waseem Soomro;Sofia Iqbal
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1022-1034
    • /
    • 2023
  • In this study, the impact of varying lighting conditions on recognition and decision-making was considered. The luminosity approach was presented to increase gesture recognition performance under varied lighting. An efficient framework was proposed for sensor-based sign language gesture identification, including picture acquisition, preparing data, obtaining features, and recognition. The depth images were collected using multiple Microsoft Kinect devices, and data were acquired by varying resolutions to demonstrate the idea. A case study was designed to attain acceptable accuracy in gesture recognition under variant lighting. Using American Sign Language (ASL), the dataset was created and analyzed under various lighting conditions. In ASL-based images, significant feature points were selected using the scale-invariant feature transformation (SIFT). Finally, an artificial neural network (ANN) classified hand gestures using specified characteristics for validation. The suggested method was successful across a variety of illumination conditions and different image sizes. The total effectiveness of NN architecture was shown by the 97.6% recognition accuracy rate of 26 alphabets dataset with just a 2.4% error rate.

Delineating the Prostate Boundary on TRUS Image Using Predicting the Texture Features and its Boundary Distribution (TRUS 영상에서 질감 특징 예측과 경계 분포를 이용한 전립선 경계 분할)

  • Park, Sunhwa;Kim, Hoyong;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.603-611
    • /
    • 2016
  • Generally, the doctors manually delineated the prostate boundary seeing the image by their eyes, but the manual method not only needed quite much time but also had different boundaries depending on doctors. To reduce the effort like them the automatic delineating methods are needed, but detecting the boundary is hard to do since there are lots of uncertain textures or speckle noises. There have been studied in SVM, SIFT, Gabor texture filter, snake-like contour, and average-shape model methods. Besides, there were lots of studies about 2 and 3 dimension images and CT and MRI. But no studies have been developed superior to human experts and they need additional studies. For this, this paper proposes a method that delineates the boundary predicting its texture features and its average distribution on the prostate image. As result, we got the similar boundary as the method of human experts.