• Title/Summary/Keyword: SIFT 매칭

Search Result 61, Processing Time 0.034 seconds

Experiment for 3D Coregistration between Scanned Point Clouds of Building using Intensity and Distance Images (강도영상과 거리영상에 의한 건물 스캐닝 점군간 3차원 정합 실험)

  • Jeon, Min-Cheol;Eo, Yang-Dam;Han, Dong-Yeob;Kang, Nam-Gi;Pyeon, Mu-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • This study used the keypoint observed simultaneously on two images and on twodimensional intensity image data, which was obtained along with the two point clouds data that were approached for automatic focus among points on terrestrial LiDAR data, and selected matching point through SIFT algorithm. Also, for matching error diploid, RANSAC algorithm was applied to improve the accuracy of focus. As calculating the degree of three-dimensional rotating transformation, which is the transformation-type parameters between two points, and also the moving amounts of vertical/horizontal, the result was compared with the existing result by hand. As testing the building of College of Science at Konkuk University, the difference of the transformation parameters between the one through automatic matching and the one by hand showed 0.011m, 0.008m, and 0.052m in X, Y, Z directions, which concluded to be used as the data for automatic focus.

Remote Sensing Image Registration using Structure Extraction and Keypoint Filtering (구조물 검출 네트워크 및 특징점 필터링을 이용한 원격 탐사 영상 정합)

  • Sung, Jun-Young;Lee, Woo-Ju;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.300-304
    • /
    • 2020
  • 본 논문에서는 원격 탐사 영상 정합에서 정확도는 유지하면서 특징점 매칭 (Matching) 복잡도를 줄이기 위해 입력 영상을 전처리하는 구조물 검출 네트워크를 이용한 원격 탐사 영상 정합 방법을 제안한다. 영상 정합의 기존 방법은 입력 영상에서 특징점을 추출하고 설명자 (Descriptor)를 생성한다. 본 논문에서 제안하는 방법은 입력 영상에서 특징점 매칭에 영향을 미치는 구조물만 추출하여 새로운 영상을 만들어 특징점을 추출한다. 추출된 특징점은 필터링 (Filtering)을 거쳐 원본 영상에 매핑 (Mapping)되어 설명자를 생성하여 특징점 매칭 속도를 향상시킨다. 또한 구조물 검출 네트워크에서 학습 영상과 시험 영상의 특성의 차이로 생기는 성능 저하 문제를 개선하기 위해 히스토그램 매핑 기법을 이용한다. 아리랑 3 호가 획득한 원격 탐사 영상에 대한 실험을 통해 제안하는 방법은 정확도를 유지하면서 계산 시간을 SURF 보다 87.5%, SIFT 보다 92.6% 감소시킬 수 있다.

  • PDF

Natural Object Recognition for Augmented Reality Applications (증강현실 응용을 위한 자연 물체 인식)

  • Anjan, Kumar Paul;Mohammad, Khairul Islam;Min, Jae-Hong;Kim, Young-Bum;Baek, Joong-Hwan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.143-150
    • /
    • 2010
  • Markerless augmented reality system must have the capability to recognize and match natural objects both in indoor and outdoor environment. In this paper, a novel approach is proposed for extracting features and recognizing natural objects using visual descriptors and codebooks. Since the augmented reality applications are sensitive to speed of operation and real time performance, our work mainly focused on recognition of multi-class natural objects and reduce the computing time for classification and feature extraction. SIFT(scale invariant feature transforms) and SURF(speeded up robust feature) are used to extract features from natural objects during training and testing, and their performance is compared. Then we form visual codebook from the high dimensional feature vectors using clustering algorithm and recognize the objects using naive Bayes classifier.

Matching Algorithm using Histogram and Block Segmentation (히스토그램과 블록분할을 이용한 매칭 알고리즘)

  • Park, Sung-Gon;Choi, Youn-Ho;Cho, Nae-Su;Im, Sung-Woon;Kwon, Woo-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.231-233
    • /
    • 2009
  • The object recognition is one of the major computer vision fields. The object recognition using features(SIFT) is finding common features in input images and query images. But the object recognition using feature methods has suffered of difficulties due to heavy calculations when resizing input images and query images. In this paper, we focused on speed up finding features in the images. we proposed method using block segmentation and histogram. Block segmentation used diving input image and than histogram decided correlation between each 1]lock and query image. This paper has confirmed that tile matching time reduced for object recognition since reducing block.

  • PDF

Applying SIFT Feature to Occlusion, Damage and Rotation Invariant Traffic Sign Recognition (겹침과 훼손, 회전에 강건한 교통표지판 인식을 위한 SIFT 적용 방법)

  • Kim, Sang-Chul;Lee, Je-Min;Kim, Dae-Youn;Nang, Jong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.351-353
    • /
    • 2012
  • 교통 표지판은 도로 주행에 있어 분별력 있는 정보를 제공한다. 하지만 주행 중에 가로수나 다른 자동차에 의해 교통 표지판은 가려져 있거나 훼손된 경우가 많다. 또한 자동차가 커브할 때 카메라 영상에는 회전된 객체로 보이게 된다. 이런 경우에 교통 표지판의 인식이 어렵기 때문에 본 논문에서는 각 문제점에 모두 강건한 피처를 이용해 매칭하는 방법을 제안하였다. 본 논문에서 제안한 방법에 기반하여 주행 중 영상에서 보다 분별력 있는 정보를 획득하여 더 많은 응용 분야에 적용할 것으로 기대한다.

Deep Learning-based Keypoint Filtering for Remote Sensing Image Registration (원격 탐사 영상 정합을 위한 딥러닝 기반 특징점 필터링)

  • Sung, Jun-Young;Lee, Woo-Ju;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.26-38
    • /
    • 2021
  • In this paper, DLKF (Deep Learning Keypoint Filtering), the deep learning-based keypoint filtering method for the rapidization of the image registration method for remote sensing images is proposed. The complexity of the conventional feature-based image registration method arises during the feature matching step. To reduce this complexity, this paper proposes to filter only the keypoints detected in the artificial structure among the keypoints detected in the keypoint detector by ensuring that the feature matching is matched with the keypoints detected in the artificial structure of the image. For reducing the number of keypoints points as preserving essential keypoints, we preserve keypoints adjacent to the boundaries of the artificial structure, and use reduced images, and crop image patches overlapping to eliminate noise from the patch boundary as a result of the image segmentation method. the proposed method improves the speed and accuracy of registration. To verify the performance of DLKF, the speed and accuracy of the conventional keypoints extraction method were compared using the remote sensing image of KOMPSAT-3 satellite. Based on the SIFT-based registration method, which is commonly used in households, the SURF-based registration method, which improved the speed of the SIFT method, improved the speed by 2.6 times while reducing the number of keypoints by about 18%, but the accuracy decreased from 3.42 to 5.43. Became. However, when the proposed method, DLKF, was used, the number of keypoints was reduced by about 82%, improving the speed by about 20.5 times, while reducing the accuracy to 4.51.

Fixed-Point Modeling and Performance Analysis of a SIFT Keypoints Localization Algorithm for SoC Hardware Design (SoC 하드웨어 설계를 위한 SIFT 특징점 위치 결정 알고리즘의 고정 소수점 모델링 및 성능 분석)

  • Park, Chan-Ill;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.49-59
    • /
    • 2008
  • SIFT(Scale Invariant Feature Transform) is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vortices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3-D image constructions, and its most computation-intensive stage is a keypoint localization. In this paper, we develope a fixed-point model of the keypoint localization and propose its efficient hardware architecture for embedded applications. The bit-length of key variables are determined based on two performance measures: localization accuracy and error rate. Comparing with the original algorithm (implemented in Matlab), the accuracy and error rate of the proposed fixed point model are 93.57% and 2.72% respectively. In addition, we found that most of missing keypoints appeared at the edges of an object which are not very important in the case of keypoints matching. We estimate that the hardware implementation will give processing speed of $10{\sim}15\;frame/sec$, while its fixed point implementation on Pentium Core2Duo (2.13 GHz) and ARM9 (400 MHz) takes 10 seconds and one hour each to process a frame.

Design and Implementation of a Mobile Search Method based on Images (이미지 기반 모바일 검색 방법의 설계 및 구현)

  • Song, Jeo;Jeon, Jin-Hwan;Song, Un-Kyung;Lee, Sang-Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.33-35
    • /
    • 2016
  • 본 논문에서는 모바일 디바이스를 이용하여 촬영한 이미지 또는 이미 모바일 디바이스에 저장된 이미지를 사용자가 검색을 위한 질의어로 사용할 수 있는 방법에 대하여 제안한다. 기존의 모바일 검색엔진을 그대로 활용하기 위해 이미지 어노테이션에 기반한 태깅 키워드를 검색 이미지와 매칭하여 질의하는 방식으로 구현하며, 이 과정에서 이미지의 분석과 분류를 위한 SVM(Support Vector Machine)과 SIFT(Scale Invariant Feature Transform) 알고리즘을 사용하였으며, 이미지 어노테이션 태깅에 대한 키워드 매칭을 위해 빅데이터에서의 MapReduce를 응용하였다.

  • PDF

Image Scale Prediction Using Key-point Clusters on Multi-scale Image Space (다중 스케일 영상 공간에서 특징점 클러스터를 이용한 영상스케일 예측)

  • Ryu, kwon-Yeal
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • In this paper, we propose the method to eliminate repetitive processes for key-point detection on multi-scale image space. The proposed method detects key-points from the original image, and select a good key-points using the cluster filters, and create the key-point clusters. And it select reference objects by using direction angles of the key-point clusters, predict the scale of the original image by using the distributed distance ratio. It transform the scale of the reference image, and apply the detection of key-points to the transformed reference image. In the results of the experiment, the proposed method can be found to improve the key-points detection time by 75 % and 71 % compared to SIFT method and scaled ORB method using the multi-scale images.

Extended SURF Algorithm with Color Invariant Feature and Global Feature (컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.58-67
    • /
    • 2009
  • A correspondence matching is one of the important tasks in computer vision, and it is not easy to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. A SURF(Speeded Up Robust Features) algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform) with closely maintaining the matching performance. However, because SURF considers only gray image and local geometric information, it is difficult to match corresponding points on the image where similar local patterns are scattered. In order to solve this problem, this paper proposes an extended SURF algorithm that uses the invariant color and global geometric information. The proposed algorithm can improves the matching performance since the color information and global geometric information is used to discriminate similar patterns. In this paper, the superiority of the proposed algorithm is proved by experiments that it is compared with conventional methods on the image where an illumination and a view point are changed and similar patterns exist.