• 제목/요약/키워드: SIAH Interacting Protein

검색결과 2건 처리시간 0.015초

An Arabidopsis Homologue of Human Seven-in-Absentia-interacting Protein Is Involved in Pathogen Resistance

  • Kim, Youn-Sung;Ham, Byung-Kook;Paek, Kyung-Hee;Park, Chung-Mo;Chua, Nam-Hai
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.389-394
    • /
    • 2006
  • Human seven-in-absentia (SIAH)-interacting protein (SIP) is a component of the E3 ligase complex targeting beta-catenin for destruction. Arabidopsis has one SIP protein (AtSIP) with 32% amino acid sequence identity to SIP. To investigate the functions of AtSIP, we isolated an atsip knockout mutant, and generated transgenic plants overexpressing AtSIP. The growth rates and morphologies of the atsip and transgenic plants were indistinguishable from those of wild type. However, atsip plants were more susceptible to Pseudomonas syringae infection, and the transgenic plants overexpressing AtSIP were more resistant. Consistent with this, RNA blot analysis showed that the AtSIP gene is strongly induced by wounding and hydrogen peroxide treatment. In addition, when plants were infected with P. syringae, AtSIP was transiently induced prior to PR-1 induction. These observations show that Arabidopsis AtSIP plays a role in resistance to pathogenic infection.

인체 SIP 단백질에 특이적인 단일클론 항체의 특성 (Characterization of a Monoclonal Antibody Specific to Human Siah-1 Interacting Protein)

  • 윤선영;주종혁;김주헌;강호범;김진숙;이영희;권두한;김창남;최인성;김재화
    • IMMUNE NETWORK
    • /
    • 제4권1호
    • /
    • pp.23-30
    • /
    • 2004
  • Background: A human orthologue of mouse S100A6-binding protein (CacyBP), Siah-1-interacting protein (SIP) had been shown to be a component of novel ubiquitinylation pathway regulating $\beta$-catenin degradation. The role of the protein seems to be important in cell proliferation and cancer evolution but the expression pattern of SIP in actively dividing cancer tissues has not been known. For the elucidation of the role of SIP protein in carcinogenesis, it is essential to produce monoclonal antibodies specific to the protein. Methods: cDNA sequence coding for ORF region of human SIP gene was amplified and cloned into an expression vector to produce His-tag fusion protein. Recombinant SIP protein and monoclonal antibody to the protein were produced. The N-terminal specificity of anti-SIP monoclonal antibody was conformed by immunoblot analysis and enzyme linked immunosorbent assay (ELISA). To study the relation between SIP and colon carcinogenesis, the presence of SIP protein in colon carcinoma tissues was visualized by immunostaining using the monoclonal antibody produced in this study. Results: His-tag-SIP (NSIP) recombinant protein was produced and purified. A monoclonal antibody (Korea patent pending; #2003-45296) to the protein was produced and employed to analyze the expression pattern of SIP in colon carcinoma tissues. Conclusion: The data suggested that anti-SIP monoclonal antibody produced here was valuable for the diagnosis of colon carcinoma and elucidation of the mechanism of colon carcinogenesis.