• Title/Summary/Keyword: SI3N4

Search Result 2,122, Processing Time 0.029 seconds

Preparation and Properties of Na-Ca-Si-O-N System Oxynitride Glasses (Na-Ca-Si-O-N계 Oxynitride Glass의 제조 및 특성)

  • 이종호;이용근;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.85-92
    • /
    • 1993
  • Oxynitride glasses in Na-Ca-Si-O-N system were prepared by melting at 135$0^{\circ}C$ for 2 hours in N2 gas. The effects of Si/Na mole ratio and the various Si3N4 contents were investigated. Stable oxynitride glasses can be obtained up to 9wt.% Si3N4 content in case the Si/Na mole ratio was 2.12 and 1.62, but $\beta$-Si3N4 was precipitated at 9wt.% Si3N4 content in case the Si/Na mole rtio was 1.12. Density (p), chemical durability, hardness (Hv), and fracture toughness (KIC) increased with increasing Si3N4 content. In cae the Si/Na mole ratio was 1.12, the increment of properties was remarkable but hardness and fracture toughness did not increase no longer owing to precipitation of $\beta$-Si3N4.

  • PDF

Processing and Thermal Properties of S${i_3}{N_4}$-BN Composites (S${i_3}{N_4}$-BN복합재료의 제조 및 열적 특성)

  • Lee, O-Sang;Park, Hui-Dong;Lee, Jae-Do
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.381-387
    • /
    • 1993
  • The silicon oxynitride bonded $Si_3N_4-BN$ composite has been developed based on the selective oxidation behavier of $Si_3N_4$ over BN. The silicon oxynitride phase converted to the reaction between $Si_3N_4$ and $SiO_2$ formed on $Si_3N_4$ powder surface during oxidation treatment at the sintering temperature. The developed composite has excellent high-temperature strength, thermal shock resistance, precision machinability and corrosion resistance to the molten steel. The developed composite may therefore be used as, for example, break ring materials in continuous casting of steel.

  • PDF

Effect of Si3N4 Buffer Layer on Transmittance of TiO2/Si3N4/Ag/Si3N4/TiO2 Multi Layered Structure (TiO2/Si3N4/Ag/Si3N4/TiO2 다층구조에서 Si3N4 버퍼층이 투과율에 미치는 영향)

  • Lee, Seo-Hee;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.44-47
    • /
    • 2012
  • The $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ multi layered structure was designed for the possible application of transparent electrodes in PDP (Plasma Display Panel). Multi layered film was deposited on a glass substrate at room temperature by DC/RF magnetron sputtering system and EMP (Essential Macleod Program) was adopted to optimize the optical characteristics of film. During the deposition process, the Ag layer in $TiO_2/Ag/TiO_2$ became heavily oxidized and the filter characteristic was degraded easily. In thus study, Si3N4 layer was used as a diffusion buffer layer between $TiO_2$ and Ag. in order to prevent the oxidation of Ag layer in $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ structure. It was confirmed that $Si_3N_4$ layer is one of candidate materials acting as diffusin barrier between $TiO_2/Ag/TiO_2$.

Fabrication of $Si_3N_4-SiC$ Nanocomposites by Hot Pressing (Hot Pressing에 의한 $Si_3N_4-SiC$ 나노복합체의 제조)

  • 김성현;김인술;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1021-1029
    • /
    • 1994
  • SiC ultrafine particles of 1, 10, 20 and 30 vol% were dispersed in $\alpha$-Si3N4 matrix and hot-pressed under the condition of 30 MPa at 1800 and 190$0^{\circ}C$ respectively. Physical, mechanical properties and microstructures of sintered Si3N4-SiC nanocomposites were investigated. Flexural strength and density of Si3N4-10 vol% SiC nanocomposites hot-pressed at 190$0^{\circ}C$ represented the 1002 MPa and 97.9%T.D respectively, and it was confirmed as a remarkable improvement of 67% compared to Si3N4 monolith. Fracture toughness was shown as 7.2 MPa.m1/2 when the same composition was hot pressed at 180$0^{\circ}C$. This effect was supposed to be due to the improvement of microstructure by the adequate suppression of the excessive growth of Si3N4 grain with SiC nano-particles.

  • PDF

Nitrogenation of Coal Ash in the Presence of Carbon and Product Distributions of AlN, SiC and Si₃N₄ (석탄회의 탄소가 첨가된 질화반응과 AlN, SiC 그리고 Si₃N₄의 생성분포)

  • 양현수;홍원표;노재성;서동수;손응권
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.956-956
    • /
    • 1990
  • A nitrogenation of coal ash in the presence of carbon was carried out to examine the effects of reaction temperature, reaction time and carbon composition on the formation of AlN, SiC and Si3N4. Decreasing the particle size increased the formation of AlN and its maximum composition in the product was obtaiend under 1450∼1500℃, 2 hours of reaction time and about 30% of carbon addition(on the basis of sample weight). Compositions of SiC and Si3N4 were distributed to the opposite so that SiC showed a higher composition compared with Si3N4 at a lower temperature, a shorter reaction time and a greater carbon addition.

Syntheses of SiC and $SiC-Si_3N_4$ Powder from Jecheon Quartz (제천규석으로부터 SiC 및 $SiC-Si_3N_4$계 분말 합성)

  • 이홍림;배철훈;문준화
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.67-73
    • /
    • 1986
  • SiC and $SiC-Si_3N_4$ powder were synthesized via the carbiding and carbiding-nitriding reaction of Jecheon quartz respectively using graphite as a reducing agent. $\beta$-SiC+($\alpha$+$\beta$)-$Si_3N_4$ composite was obtained by the carbiding-nitriding reaction of Jecheon quartz-graphite mixture at 1, 35$0^{\circ}C$ in $H_2$ atmosphere. $\beta$-SiC+($\alpha$+$\beta$)-$Si_3N_4$ composite was obtained by the carbidint-nitriding reaction of Jecheon quartz-graphite mixture at 1, 35$0^{\circ}C$ in $N_2-H_2$ atmosphere. The ratio of $\beta$-SiC+($\alpha$+$\beta$)-$Si_3N_4$ content in a produced composite could be controlled by adjusting the reaction time and gaseous mixture.

  • PDF

In-Situ Synthesis of $\textrm{Si}_{3}\textrm{N}_{4}$-AIN Ceramic Composites ($\textrm{Si}_{3}\textrm{N}_{4}$-AIN 복합세라믹스의 In-Situ합성)

  • Lee, Byeong-Taek;Kim, Hae-Du;Heo, Seok-Hwan;Lee, Chan-Gyu
    • Korean Journal of Materials Research
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 1998
  • In-Sit반응소결에의해 Si과 AI금속분말을 이용하여 Si$_{3}$N$_{4}$-AIN 복합세라믹스를 합성하였다. 합성된 Si$_{3}$N$_{4}$-AIN복합세라믹스의 미세조직과 결정구조를 해석하기 위해, OM, TEM, XRD및 EDX를 이용하였으며, Si$_{3}$N$_{4}$-AIN -20wt.%AIN복합세라믹스에서 Si의 질화율은 97%로 가장 높았다. Si$_{3}$N$_{4}$-AIN 복합세라믹스에서 Si의 질화율은 AI첨가량 증가에 따라 감소하였다. 대부분의 AI입자들은 다결정 AI입자들은 다결정 AIN(4-H구조)로 완전질화되었으며, 따라서 잔류 AI상은 반응소결체내에서 관찰되지 않았다. Si$_{3}$N$_{4}$의 결정구조는 $\alpha$$\beta$구조가 혼재된 상태이며, 잔류 Si입자내에서는 미소균열 및 전위가 관찰되었다. AI/Si$_{3}$N$_{4}$와 Si$_{3}$N$_{4}$ 두계면에서 이들은 거친 형상을 보이지만, 계면반응상은 관찰되지 않았다.

  • PDF

Cutting characteristic of SiC-$Si_3N_4$ ceramic cutting tools (SiC-$Si_3N_4$계 세라믹 절삭공구의 절삭특성 평가)

  • 박준석;김경재;권원태;김영욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.898-901
    • /
    • 2000
  • It is known that Si3N4 ceramic insert has less hardness than Al2O3 ceramic insert. But Si3N4 ceramic insert has not only high toughness and strength but also low thermal expansion coefficient, which makes it has longer tool life under thermal stress condition. In this study, commercial Si3N4 ceramic insert and home-made SiC-Si3N4 ceramic insert which has different sintering time and chemical composition is tested under various cutting conditions. The experimental result is compared in terms of tool life and cutting force. Generally, As the cutting speed and the feed rate increased, the cutting force and the flank wear increased too. The performance of SiC-Si3N4 ceramic insert shows the possibility to be a new ceramic tool.

  • PDF

Cutting characteristics of in situ toughened $SiC-Si_3N_4$ composite (현장인화 $SiC-Si_3N_4$ 복합재료의 절삭성능 평가)

  • 김경재;박준석;권원태;김영욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.386-391
    • /
    • 2000
  • It is known that Si$_3$N$_4$ceramic insert has less hardness than A1$_2$O$_3$ceramic insert. But Si$_3$N$_4$ceramic insert has not only high toughness and strength but also low thermal expansion coefficient, which makes it has longer tool life under thermal stress condition. In this study, commercial Si$_3$N$_4$ ceramic insert and home-made SiC-Si$_3$N$_4$ceramic insert which has different sintering time and chemical composition is tested under various cutting conditions. The experimental result is compared in terms of tool life and cutting force. Generally, As the cutting speed and the feed rate increased, the cutting force and the flank wear increased too. The performance of SiC-Si$_3$N$_4$ceramic insert shows the possibility to be a new ceramic tool.

  • PDF

The Fabrication of $Si_3N_4/SiC$ Nano-Composite ($Si_3N_4/SiC$ Nano Composite의 제조)

  • Lee, Su-Yeong;Lee, Han-Seop
    • 연구논문집
    • /
    • s.23
    • /
    • pp.165-171
    • /
    • 1993
  • $Si_3N_4/Sic$. nano-composites were fabricated by hot-pressing, gas pressure sintering. The composites contained up to 50 wt. % of SiC. The mechanical properties such as strength, toughness, and hardness of the composite are compared each other. The flexural strength of the composites was improved significantly by introducing fine SiC particles into $Si_3N_4$ matrix, while the fracture toughness was not improved. The increase in flexural strength is attributed to the formation of uniformly elongated $\beta -Si_3N_4$ grains as well as the reduction of grain size.

  • PDF