• 제목/요약/키워드: SI engine(Spark Ignition Engine)

검색결과 88건 처리시간 0.026초

SI 엔진의 시동 및 아이들 구간에서의 점화시기에 따른 싸이클별 연소현상에 관한 실험적 연구 (An Experimental Study of Cyclic Combustion Characteristics at Starting and Idling Phase on Spark Ignition Engine)

  • 최성원;최관희;명차리;박심수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3317-3322
    • /
    • 2007
  • THC(Total Hydrocarbon) emissions during cold start and warm-up phase constitute the majority of THC emissions during the FTP-75 mode. As the basic approach to improve the emission performance of Gasoline engine during transient phase, the effect of spark timing retard from MBT on THC emission characteristics is studied by engine test using a Fast response Flame Ionization Detector(FFID). A cyclic analysis of the combustion process shows that high THC emissions are produced first few cycles during the transient phase. This paper presents the results of engine performance and emission of Gasoline engine with various spark timing. consequently, This paper was focused on the combustion phenomena with various spark timing during transient phase which was analyzed by Fast response Flame Ionization Detector (FFID) equipment to measure the cyclic THC emission characteristics.

  • PDF

충돌벽면이 직분식 LPG의 분무 및 연소 특성에 미치는 영향에 관한 실험 연구 (A Experimental Study on the Effects of the Impingement-wall on the Spray and Combustion Characteristics of Direct-Injection LPG)

  • 황성일;정성식;염정국
    • 동력기계공학회지
    • /
    • 제19권2호
    • /
    • pp.49-56
    • /
    • 2015
  • As an alternative fuel that can be used in SI engine, LPG is one of clean fuels with larger H/C ratio compared to gasoline, low $CO_2$ emission, and small amount of pollutants such as sulfur compounds. When LPG is used in spark ignition engine, volumetric efficiency of the engine can be improved and pumping loss can be reduced by performing direct injection into the combustion chamber instead of port fuel injection. LPG-DI engine allows for lean combustion and stratified combustion under low load. In case of stratified combustion, air fuel ratio can be greatly increased compared to theoretic mixture ratio combustion. Improved thermal efficiency of the engine and reduced pumping loss can be expected from stratified combustion. Accordingly in this study, an experimental apparatus for visualization was designed and manufactured to study the combustion process of LPG after injection and ignition, intended to examine ignition probability and combustion characteristics of spark ignition direct injection(SIDI) LPG fuel. Ambient pressure, ambient temperature and fuel injection pressure were found as important variables that affect ignition probability and flame propagation characteristics of LPG-air mixture. Also, it was verified that the injected LPG fuel can be directly ignited by spark plug under appropriate ambient conditions.

스파크 점화기관의 탄화수소 배출 모델링 (Modeling of Hydrocarbon Emissions from Spark Ignition Engines)

  • 고용서
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.58-71
    • /
    • 1996
  • A model which calculates the hydrocarbon emissions from spark ignition engines is presented The model contains the formation of HC emissions due to both crevices around piston ring top land and oil films on the cylinder wall. The model also considers in-cylinder oxidation and exhaust port oxidation of desorbed HC from crevices and oil films after combustion process. The HC emissions model utilizes the results of SI engine cycle simulation. The model predicts well the trends of HC emissions from the engines when varying engine parameters.

  • PDF

연료 조성 및 스파크 플러그 위치 변경으로 인한 가스 엔진의 성능에 관한 연구 (Study on the Performance of an SI Gas Engine by Fuel Composition and Spark Plug Variation)

  • 김용래
    • 한국가스학회지
    • /
    • 제18권6호
    • /
    • pp.21-26
    • /
    • 2014
  • 연료의 사용으로 인한 이산화탄소의 발생량을 줄일 수 있는 방법으로 바이오가스 또는 매립가스와 같은 신재생 가스 연료를 사용하는 방법이 도움이 될 수 있다. 그러나 다량의 불활성가스가 포함되어 있기 때문에 저발열량 및 연료 조성의 불균일함은 신재생 가스 연료를 발전용 엔진에 적용하는 경우, 엔진 성능에 큰 영향을 미칠 수 있기 때문에 이에 대한 연구가 필요하다. 본 연구에서는 신재생가스연료에 불활성가스가 엔진 연소가 불안정한 정도로 많이 포함된 경우에 수소 연료를 첨가함으로써 연소 안정성을 개선할 수 있음을 확인하고, 엔진의 열효율 및 배기 특성과 같은 성능 변화에 대하여 살펴보았다. 또한 같은 조건에서 엔진 효율 및 배기 성능을 향상시키기 위한 방안으로 길이가 긴 전극을 갖는 스파크 플러그를 적용하여 효과가 있음을 확인하였다.

퍼지제어방식을 이용한 SI엔진 속도제어 (Spark Ignition Engine Speed Control Using fuzzy Control Strategy)

  • 신동목;김응석;김문철;민종진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.672-674
    • /
    • 1997
  • In this paper, we study the idle speed control of the spark ignition engine. Engine idle speed control is a difficult problem because of troublesome characteristics such as severe process nonlinearities, variable time delays, time-varying dynamics and unobservable internal system states and disturbances. We investigate the intelligent control algorithms such as neural network controller and fuzzy controller for 4-cylinder 4-stroke engine.

  • PDF

CARS를 이용한 DOHC 스파크 점화 기관의 말단 가스 온도 측정 (End-Gas Temperature Measurments in a DOHC Spark-Ignition Engine Using CARS)

  • 최인용;전광민;박철웅;한재원
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.122-128
    • /
    • 1999
  • CARS(Coherent anti-Stokes Raman Spectroscopy) temperature measurement under engine-like condition was validated by measuring unburned gas temperatures of premixed propane-air flame in a constant volume combustion chamber. The measured temperatures were compared with predictions of 2 zone flame propagation model. End-gas temperatures were measured were measured by CARS technique in a conventional 4 cylinder DOHC spark-ignition engine fueled with PRF 80. Cylinder pressure was measured simultaneously with CARS signal and used as a parameter on fitting CARS spectrum to library of theoretical spectra. There was a good agreement between the measured temperature and adiabatic core temperature calculated from measured cylinder pressure. Significant heating by pre-flame reaction in the gas was observed in the late part of compression stroke.

  • PDF

흡기중의 수증기분압과 점화시기 및 연료 변화에 따른 스파크 점화기관의 화염 전파 특성 분석 (An Experimental Analysis of the Effects of Water Vapor Partial Pressure in Inlet Air, Spark Advance and Fuel Type on the Flame Propagation in a Spark Ingnition Engine)

  • 이택헌;전광민
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.191-198
    • /
    • 1998
  • In this study, the effects of water vapor in inlet air, spark advance and fuel type in the spark ignition engine were investigated through the experiments of combustion and flame arriving pattern analysis using ionization probe. The results of flame propagation experiment using ionization probe show that the flame which ignited from spark plug located at the center of the combustion chamber propagated faster in exhaust side than in intake side due to the mixture flow motion inducted into combustion chamber from intake tumble port at all conditions. And as the partial vapor pressure increased, the flame propagation became slower in all direction. Especially effects were greater for intake side than the exhaust side.

  • PDF

단일영역 열발생량 계산법을 사용한 IDI, HSDI 디젤엔진과 SI엔진의 연소특성 비교에 관한 연구 (A Study on the Comparison of the Combustion Characteristics among an IDI, a HSDI Diesel Engine and a SI Engine using One-zone Heat Release Analysis)

  • 이석영;정구섭;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.21-30
    • /
    • 2005
  • Heat release analysis is a very importent method in understanding the combustion phenomena inside an engine cylinder. In this study, one-zone heat release analysis was used with the mesured cylinder pressures of an IDI(indirect injection), a HSDI(high speed direct injection) and a SI(spark ignition) engine. It has benefits of simple equation, fast speed, reliability. The object of the study is to compare the combustion characteristics among an IDI, a HSDI and SI engine. Result of analysis, the maximum heat release rate of a HSDI is higher than an IDI because of long ignition delay period. The heat release curve of a IDI is more linear than an HSDI, so the combustion characteristics of a IDI is similiar to that of an SI engine. There is a suggestion here that the combustion efficiency of a HSDI is highest of that of all engines because of the smallest heat transfer loss of all engines.

실린더 압력을 이용한 SI엔진의 페루프 점화시기 제어에 관한 연구 (SI Engine Closed-loop Spark Advance Control Using Cylinder Pressure)

  • 박승범;윤팔주;선우명호
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2361-2370
    • /
    • 2000
  • The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance based upon cylinder pressure of spark ignition engines. A location of peak pressure(LPP) is the major parameter for controlling the spark timing, and also the UP is estimated, using a multi-layer feedforward neural network, which needs only five pressure sensor output voltage samples at -40˚, -20˚, 0˚, 20˚, 40˚ after top dead center. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 10 crank angle(CA) to 20˚ CA. A proposed control algorithm does not need a sensor calibration and pegging(bias calculation) procedure because the neural network estimates the UP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advance. The experimental results have revealed a favorable agreement of individual cylinder optimal combustion phasing.