• Title/Summary/Keyword: SI combustion

Search Result 399, Processing Time 0.027 seconds

Preparation of β-SiAlON Powder by Combustion Reaction in the System of Si-Al-SiO2-NH4F(β-Si3N4) (Si-Al-SiO2-NH4F(β-Si3N4)계에서 연소반응에 의한 β-SiAlON분말의 제조)

  • Min, Hyun-Hong;Shin, Chang-Yun;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.595-600
    • /
    • 2006
  • The preparation of $\beta$-SiAlON powder by SHS in the system of $Si-Al-SiO_2-NH_4F(\beta-Si_3N_4)$ was investigated in this study. In the preparation of SiAlON powder, the effect of gas pressure, compositions such as Si, $NH_4F$, \beta-Si_3N_4$ and additive in mixture on the reactivity were investigated. At 50 atm of the initial inert gas pressure in reactor, the optimum composition for the preparation of pure $\beta$-SiAlON was $3Si+Al+2SiO_2+NH_4F$. The $\beta$-SiAlON powder synthesized in this condition was a single phase $\beta$-SiAlON with a rod like morphology.

A Study on the Combustion and Exhaust Emission Characteristics with the Variations of Mixing and Air-fuel Ratio of Bio-ethanol - Gasoline in a SI Engine (SI엔진에서 바이오에탄올-가솔린 혼합율 및 공연비 변화에 따른 연소 및 배기배출물 특성에 관한 연구)

  • Yoon, Seunghyun;Ha, Sungyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.358-364
    • /
    • 2016
  • The combustion and exhaust emission characteristics in a spark ignition (SI) engine with various test fuels (bioethanol - gasoline blends) and air-fuel ratio were investigated in this research. To investigate the influence of the excess air ratio and ethanol blends on the combustion characteristics such as the cylinder pressure, rate of heat release (ROHR), and fuel consumption rate were analyzed. In addition, the reduction effects of exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), and oxides of nitrogen (NOx) were compared with those of neat gasoline fuel under the various excess-air ratios. The results showed that the peak combustion pressures and the ROHR of bioethanol fuel cases were slightly higher than those of gasoline fuel at all test ranges and fuel ratio. As compared with gasoline fuel (G100) at each given excess air ratio, BSFC of bio-ethanol was increased. The CO, HC, NOx emissions of bio-ethanol blends were lower than those of gasoline fuel under overall experimental conditions.

Influences of the Molar Ratio of $Mo/MoO_3$ on Characteristics of $MoSi_2-Al_2O_3$ composites by SHS Methods (연소합성법에 의한 $MoSi_2-Al_2O_3$ 복합재료의 특성에 미치는 $Mo/MoO_3$ 몰비의 영향)

  • 장윤식;이윤복;김용백;김인술;박흥채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1209-1216
    • /
    • 1996
  • MoSi2-Al2O3 composites were prepared by thermal explosion mode of self-propagating high temperature syn-thesis (SHS) using element powders of MoO3 Mo Si and Al. The combustion products of MoSi2 which have 10, 20, 30 and 40 wt% Al2O3 showed the molten state in the range of Mo to MoO3 6:1-9.5:1, 2:1-8:1, 1:1-5:1, and 1:1-3:1 (molar ratio) respectively. The combustion products which made least seperation the molten phase from the slag phase were in Mo/MoO3=9, 5:1, 8:1, 5:1 and 3:1 (molar ratio) respectively. Particles size of MoSi2 and Al2O3 in the combustion product were decreased as the molar ratio of Mo to MoO3 increase. By XRD analysis only MoSi2 and $\alpha$-Al2O3 peaks were identified in the combusion products, In case of MoSi2 containing 20wt% Al2O3 5.1wt% Al existed into MoSi2 grains and 30.7wt% Si and 7.7wt% Mo existed into Al2O3 grains. The relative density of MoSi2 containing 10, 20, 30 and 40 wt% Al2O3 were 82.7, 85.2, and 81.9% respectively. The fracture strength of MoSi2-Al2O3 composites increased with increasing Al2O3 and that of MoSi2-20wt% Al2O3 composite was 195 MPa.

  • PDF

An Experimental Study of the Effect of PDA valve on the Combustion Characteristics of the Spark Ignition Engine (PDA 밸브가 SI 엔진의 연소특성에 미치는 영향에 대한 실험적 연구)

  • 김대열;한영출
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.104-112
    • /
    • 2004
  • The Swirl is one of the important parameters that effects the characteristics of combustion. PDA valve has been developed to satisfy two requirements of achieving sufficient swirl generation for improving the combustion and still maintaining high volumetric efficiency. This paper presents the experimental results of the effect of PDA valve on characteristics of combustion in single cylinder spark ignition engine. As a result, the combustion stability can be greatly improved by PDA valve. The data from present study are available for design of engine as the basic data.

A Study on the Improvements of Idle Performance for a SI Engine with a Syngas Assist (합성가스를 이용한 SI엔진의 아이들 성능 개선에 관한 연구)

  • Kim, Chang-Gi;Song, Chun-Sub;Cho, Young-Seok;Kang, Kern-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2006
  • In this study, syngas which is reformed from fossil fuel and has hydrogen as a major component, was added to a gasoline engine to improve combustion stability and exhaust emissions of idle state. Syngas fraction of the total supplied fuel varied to 0 %, 25 %, 50 % with various ignition timing and excess air ratio. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to widely extend lean operation limit and ignition retard range with dramatical reduction of engine out emissions. It is supposed that the usage of syngas in the internal combustion engine is an effective solution to meet the future strict emission regulations.

  • PDF

A Multidimensional Simulation of Swirl Flow and Turbulent Combustion in a Cylinder of SI Engine (전기점화 기관의 선회 유동 및 연소에 관한 수치해석)

  • 정진은;김응서
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1744-1759
    • /
    • 1992
  • A multidimensional simulation of turbulent flow and combustion with swirl in the cylinder of SI engine is implemented to clarify the effects of swirl. present simulation employs the ICED-ALE numerical technique, the skew-upwind difference scheme, a modified k_.epsilon. turbulence model, a combustion model of Arrhenius type and turbulence-mixing-control type. First, the calculations for swirling flow in an axisymmetric cylinder are carried out. The results are compared with the experimental data to validate the numerical analysis. Second, the calculations for intake, compression and combustion processes in an axisymmetric cylinder are performed. The effects of swirl on turbulent flow and combustion are examined through the parametric study of swirl number 0.0, 0.6, 1.2 and 2.4. As a result, it is numerically shown that the turbulent kinetic energy and the swirl velocity, which are produced during the intake process, affect the combustion process.

ANALYSIS OF DIRECT INJECTION SI STRATIFIED COMBUSTION IN HYDROGEN LEAN MIXTURE - COMBUSTION PROMOTION AND COOLING LOSS BY HYDROGEN -

  • Shudo, Toshio;Tsuga, Koichiro
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.85-91
    • /
    • 2001
  • Characteristics of methane direct-injection spark-ignition stratified combustion in lean hydrogen mixture were analyzed both in a single cylinder engine and in a constant volume combustion chamber. Combustion pressure and Instantaneous combustion chamber wall temperature during the combustion process were measured with a thin-film thermocouple and used in analyses of combustion and cooling loss. Results in this research show that the premixed hydrogen increases cooling loss to combustion chamber wall while achieving combustion promotion, and the combustion system is effective especially in lean mixture conditions. Analysis of flame propagation was also done with Schlieren photography in the constant volume combustion chamber.

  • PDF

A Prediction Study on the SI engine Characteristics using the Variable Valve Timing (밸브개폐시기가변에 따른 엔진 특성의 예측에 관한 연구)

  • ;;Wu deyu;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.48-55
    • /
    • 1999
  • In this paper, a zero-dimensional two zone model is developed to investigate the effects of variable valve timing on combustion process in SI engine. The simulation results show that the predicted data has good agreement with experimental ones. The useful information of combustion process such like residual gas fraction cylinder pressure, cylinder temperature and NO concentration can be obtained and the effects of engine variables on combustion processes and performances can be evaluated.

  • PDF

A study on the Valve Overlap Period and Valve Lift on the SI Engine Characteristics (밸브오버랩기관과 양정변화가 엔진특성에 미치는 영향에 관한 연구)

  • 황재원;김응혁;황화자;한정희;채재우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.28-36
    • /
    • 2001
  • In this study, a zero-dimensional two zone model is developed to investigate the effects of valve overlap period and valve lift on combustion and gas exchange process in SI engine. The simulation results show that the predicted data has good agreements with experimental ones. The useful information of combustion and gas exchange process such as residual gas fraction, cylinder pressure, mass flow rate and volumetric efficiency can be obtained and the effects of engine variables on combustion processes and performances can be evaluated.

  • PDF

A Study on Combustion and Emission Characteristics of the Methanol Blended Fuel in SI Engine (SI엔진의 메탄올 혼합 연료의 연소 및 배출 가스 특성에 관한 연구)

  • 조행묵;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 2003
  • The engine performance and combustion characteristics of methanol blended fuel in a multiple-point electronic control gasoline engine were discussed on the basis of experimental investigation. The effects of methanol blending fuel on combustion in cylinder were investigated under various conditions of engine cycle and blending ratio. The results showed that the engine performance was influenced by the methanol blended ratio. The results showed that the engine performance was influenced by the methanol blending ratio and the variations of operating conditions of test engine. The increase of blended fuel brought on the improvement of emission characteristics such as THC, CO, and NOx concentration. The effect of methanol blended fuel on the fuel consumption rate and the other characteristics of performance were discussed.