• Title/Summary/Keyword: SI Engine

검색결과 370건 처리시간 0.027초

Effects of MTV on fuel distribution and flame stability in a SI engine (MTV가 연소실내 연료분포 및 화염 안정성에 미치는 영향 연구)

  • Kim, K S.
    • Journal of ILASS-Korea
    • /
    • 제2권4호
    • /
    • pp.36-46
    • /
    • 1997
  • The present study investigated the effects of MTV(Manifold Throttle Valve) on the fuel distribution and the flame stability in a SI engine at cold, idling condition. For the quantitative measurement of fuel distribution with PLIF method, compensating techniques of various factors such as laser beam nonuniformity, background image and local OTF nonuniformity were developed. As a result, it was found that MTV had a positive effect on the air-fuel mixing and flame stability.

  • PDF

Investigation of the Knocking Phenomenon in SI Engines (가솔린 엔진에서의 노킹 현상 해석)

  • Min, Kyoung-Doug
    • Journal of the Korean Society of Combustion
    • /
    • 제5권2호
    • /
    • pp.29-35
    • /
    • 2000
  • Knock in SI engines causes physical damage to the piston and combustion chamber and lowers the thermal efficiency. The increase in compression ratio which can improve the thermal efficiency and engine performance has been limited by engine knock. So the need of making clear the knocking phenomenon has increased. This paper reviews the methods of knock detection, characterization and prediction of knock with the reduced chemical kinetic modeling.

  • PDF

An Experimental Study on Engine Performance Characteristic of LPG Engine -Engine Perfermance Character at Various Compression Rations- (LP가스 차량용 기관의 성능특성에 관한 실험 연구 -압축비 변경에 따른 기관성능특성-)

  • 조기현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.654-661
    • /
    • 1999
  • This is fundamental study to improve performance of the SI engine,. In this study a conven-tional kerosene engine was modified to LPG dedicated engine which can be operated with LPG(Liquefied Petroleum Gas) The modified model were tested in accordance with various compression ratios. Also the engine performance with modified model was compared with the conventional one. The results are sum-marized as follow; 1. In comparison with the conventional kerosene Gasoline engine and LPG dedicated engine can be operated with lower exhaust emission better fuel economy and better thermal efficiency. 2. But is produce a slightly lower brake horse power.

  • PDF

Microstructural and Mechanical Characteristics of Al-Si-Cu Die Casting Alloy for Engine Mount Bracket (엔진 마운트 브라켓용 다이캐스팅 Al-Si-Cu 합금의 미세조직과 기계적 특성)

  • Chyun, In-Bum;Hong, Seung-Pyo;Kim, Chung-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제27권6호
    • /
    • pp.281-287
    • /
    • 2014
  • Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for engine mount bracket prepared by gravity casting (as-cast) and die-casting (as-diecast) process have been investigated. For the microstructural characterization, the inductively coupled plasma mass spectrometry (ICP-MS), optical microscope (OM), scanning electron microscope (SEM) and electron probe microanalysis (EPMA) analyses are conducted. For the intermetallic phases, the X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) are also conducted with quantitative and qualitative analysis. Micro Vickers hardness and static tensile test are achieved in order to measure mechanical properties of alloys. Secondary dendrite arm spacing (SDAS) of as-cast and as-diecast show 37um and 18um, respectively. A large amount of coarsen eutectic Si, $Al_2Cu$ intermetallic phase and Fe-rich phases are identified in the Al-6Si-2Cu alloy. Mechanical properties of gravity casting alloy are much higher than those of die-casting alloy. Especially, yield strength and elongation of gravity casting alloy show 2 times higher than die-casting alloy. After shot peening, shot peening refined the surface grains and Si particles of the alloys by plastic deformation. The surface hardness value shows that shot peening alloy has higher value than unpeening alloy.

A Study on Engine-Out HC Emissions during Sl Engine Starting (전기점화 기관의 시동 시 미연탄화수소의 배출 특성 연구)

  • 김성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제11권2호
    • /
    • pp.22-30
    • /
    • 2003
  • Engine-out HC emissions were investigated during cold and hot start. The tests were conducted according to engine cooling temperatures which were controlled by simulated coolant temperatures of cold and hot start, on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. Real time engine-out HC emissions were measured at a exhaust port and cylinder head using Fast Response Flame Ionization Detector(FRFID). Unburned hydrocarbons emitted at the cold coolant temperature were much higher than those of the hot coolant temperatures. And the main source of the high HC emission was confirmed as misfire at cold coolant temperature. In addition, the effect of intake valve timing on engine-out HC emissions was investigated. The results obtained indicate that optimized intake phasing provides the potential for start-up engine-out HC emissions reduction.

Effects of Engine Control Variables on Exhaust Gas Temperature and Stability during Cranking Operation of an SI Engine (가솔린기관의 시동시 기관 제어변수가 배기가스온도 및 시동성에 미치는 영향에 관한 실험적 연구)

  • Cho, Yong-Seok;An, Jae-Won;Park, Young-Joon;Kim, Duk-Sang;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제15권1호
    • /
    • pp.64-70
    • /
    • 2007
  • Raising exhaust gas temperature during cold-start period is very crucial to improve emission performance of SI engines because it enhances the performance of catalyst in the early stage of engine start. In this study, control variables such as ignition timing, idle speed actuator(ISA) opening and fuel injection duration were extensively investigated to analyze variations in exhaust gas temperature and engine stability during cranking period. Experimental results showed that spark timing affected engine stability and exhaust gas temperature but the effects were small. On the other hand, shortened injection duration and increased ISA opening led to a significant increase in exhaust gas temperature. Under such conditions, increase in cranking time was also observed, showing that it becomes harder to start the engine. Based on these observations, a pseudo fuel-air ratio, defined as a ratio of fuel injection time to degree of ISA opening, was introduced to analyze the experimental results. In general, decrease in pseudo fuel-air ratio raised exhaust gas temperature with the cost of stable and fast cranking. On the contrary, an optimal range of the pseudo fuel-air ratio was found to be between 0.3 to 0.5 where higher exhaust gas temperatures can be obtained without sacrificing the engine stability.

Study on the Performance of an SI Gas Engine by Fuel Composition and Spark Plug Variation (연료 조성 및 스파크 플러그 위치 변경으로 인한 가스 엔진의 성능에 관한 연구)

  • Kim, Yongrae
    • Journal of the Korean Institute of Gas
    • /
    • 제18권6호
    • /
    • pp.21-26
    • /
    • 2014
  • Renewable gas fuels such as biogas and landfill gas have carbon-neutral nature which can reduce carbon dioxide. However, it is necessary to make stable combustion when this fuel is used in power generating SI(spark ignition) gas engines due to its low heating value and non-uniformity. In this study, it was shown that addition of hydrogen can increase combustion stability of gas engine which is running with high inert gas composition. Thermal efficiency and emission characteristics of this engine was also investigated. In addition, a new spark plug with a long electrode was tested and compared with a base spark plug as a way to improve engine efficiency and reduce exhaust emissions.

An Experimental Study on Reductions of Idle Emissions with the Syngas Assist in an SI Engine (합성가스를 이용한 SI 엔진의 공회전 유해 배기가스 저감에 관한 실험적 연구)

  • Kim, Chang-Gi;Kang, Kern-Young;Song, Chun-Sub;Cho, Young-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제15권3호
    • /
    • pp.174-182
    • /
    • 2007
  • Fuel reforming technology for the fuel cell vehicles could be applied to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this study, syngas was added to a gasoline engine to improve combustion stability and exhaust emissions of idle state. Syngas fraction is varied to 0%, 50%, 100% with various ignition timing and excess air ratio. Combustion stability, exhaust emissions, fuel consumption and exhaust gas temperature were measured to investigate the effects of syngas addition on idle performance. Results showed that syngas has ability to widely extend lean operation limit and ignition retard range with dramatical reduction of engine out emissions.

Comparison of Performance and Emissions Characteristics on 23cc Gasoline engine and LPG engine at WOT Condition (WOT조건에서 23cc 가솔린 엔진과 LPG 엔진의 성능 및 배기특성 비교)

  • Kim, B.G.;Choi, Y.H.;Oh, J.W.;Lee, D.G.;Kim, D.S.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • 제14권1호
    • /
    • pp.28-33
    • /
    • 2009
  • This paper presents the performance and emissions characteristics of a small spark-ignited 2-stroke gasoline and LPG engine. The engine used in this paper is a single cylinder, two-stroke, air-cooled SI engine for brush cutter. We measured the rpm, torque, fuel consumption and HC, CO, NOx emissions in associated with the dynamometer load at WOT. The results showed that as engine revolution speed decreased, the excess air ratio of gasoline engine kept going about 0.9 and that of LPG engine increased 0.83 to 1.05. Torque and power of gasoline engine was higher than LPG engine. In exhaust emissions, HC emissions of gasoline engine was lower than LPG engine. In low speed area, CO emissions of LPG engine was lower than gasoline engine. Both gasoline engine and LPG engine emitted little NOx emissions.

  • PDF