• Title/Summary/Keyword: SI Engine

Search Result 370, Processing Time 0.023 seconds

A Study on Types and Reasons of Engine Troubles Related to Fuel Oil (연료유에 의한 선박 디젤엔진 손상에 관한 연구)

  • Na, Eun-Young;Baik, Shin-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.143-150
    • /
    • 2009
  • Fuel oil mostly used for a ship is made from crude oil by refining process. In order to produce plenty of high-quality fuel oil, the Fluid catalytic cracking(FCC) method is widely adopted to many refinery factories during the decomposition process from high molecule into lower molecule. The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The big problem in FCC oil is mixing the catalyst in the oil. This reason is unstable separation of FCC catalyst in separator. Such a FCC catalyst will become a reason of heavy wear down in moving parts of engine. The impurity in oil is ash and deposit compound, such as Al, Si, Ni, Fe and V, which will accelerate the wear down on fuel pump, fuel injection valve cylinder liner and piston ring. It is important to find a basic reason of an engine trouble for preventing similar troubles anymore. Insurance compensation will be different according to the reason of an engine trouble which might be natural abrasion or other external causes. In this study, types and reasons of engine troubles related to fuel oil will be covered.

  • PDF

An Application of DoE Methodology in WAVE Simulation to Identify the Effectiveness of Variables on Engine Performance and to Optimize Responses (실험계획법과 WAVE 시뮬레이션을 이용한 엔진 작동 변수의 영향도 평가 및 최적화에 대한 연구)

  • Jeong, Dong-Won;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.16-25
    • /
    • 2009
  • Testing engine performance using an engine dynamometer requires high technical researchers and many facilities. Nowadays, different variables of CAE program are used for identifying the engine performance instead of engine dynamometer test. This is more convenience, as it does not necessitate an abundance of engine dynamometer experiments and, in addition, produces better results. However, CAE programs also contain various variables which can affect engine performance. Those are coupled with each other, thus making it difficult to determine the effectiveness of different variables on engines. DoE (Design of Experiments) methodology is an efficient way to verify the magnitude of effectiveness on engine performance as well as making responses to be optimized at once without trial & error. This study used data from WAVE simulations, which modeled the DOHC SI engine with in-line 4 cylinders at 1500, 3000 and 4500rpm. DoE methodology is designed properly to determine the effectiveness of five variables on power, BSFC, and volumetric efficiency, as well as to find the optimal response conditions at each rpm through a minimized number of experiments. After finishing DoE process, all the results are examined concerning the reliability of test through a verification experiment.

The Performance and Emission Characteristics on Operating Condition for the SI Engine Fuel with Gasoline-Ethanol and Hydrogen Enriched Gas (에탄올 및 수소농후가스 혼합연료 기관의 운전영역에 따른 성능 및 배기 특성)

  • Park, Cheol-Woong;Kim, Chang-Gi;Choi, Young;Oh, Seung-Mook;Lim, Gi-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.23-30
    • /
    • 2010
  • Trends of the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and it contributes to lower $CO_2$ emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed. In spite of the advantages of ethanol, fuel supply system might be affected by fuel blends with ethanol like a wear and corrosion of electric fuel pumps. So the on-board hydrogen production out of ethanol reforming can be considered as an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The results obtained from experiments have shown that specific fuel consumption has increased by increasing ethanol amount in the blend whereas decreased by the use of hydrogen-enriched gas. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol reforming are also examined.

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter (DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

Performance and Emission Comparisons of a SI Engine Fueled by Syngas with Varying Hydrogen Content (합성가스 연료의 수소 함량 변화가 SI 엔진의 연소특성에 주는 영향)

  • Park, Seung-Hyun;Lee, Sun-Youp;Park, Cheol-Woong;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.63-68
    • /
    • 2011
  • As an effective utilization of biomass, organic wastes and coal, attention has been made to use syngas to a reciprocating engine to generate power. However, significant component variation of syngas depending upon origin and gasification conditions, and its lower heating value than that of LPG and CNG can create difficulties in stable engine operation. Thus it is necessary to address these issues in order to successfully develop power generation engines. As a primary step to resolve these problems, effects of H2 content variation in syngas on engine performance and emission characteristics were discussed in this study. The results show that as H2 % in syngas increases, more stable combustion was achieved with retarded MBT spark timing and engine efficiency becomes maximum with syngas of 10% H2. In addition, NOx emission increased while THC emission decreased as H2 % rises in the syngas.

An Experimental Study of Cyclic Combustion Characteristics at Starting and Idling Phase on Spark Ignition Engine (SI 엔진의 시동 및 아이들 구간에서의 점화시기에 따른 싸이클별 연소현상에 관한 실험적 연구)

  • Choi, Seong-Won;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3317-3322
    • /
    • 2007
  • THC(Total Hydrocarbon) emissions during cold start and warm-up phase constitute the majority of THC emissions during the FTP-75 mode. As the basic approach to improve the emission performance of Gasoline engine during transient phase, the effect of spark timing retard from MBT on THC emission characteristics is studied by engine test using a Fast response Flame Ionization Detector(FFID). A cyclic analysis of the combustion process shows that high THC emissions are produced first few cycles during the transient phase. This paper presents the results of engine performance and emission of Gasoline engine with various spark timing. consequently, This paper was focused on the combustion phenomena with various spark timing during transient phase which was analyzed by Fast response Flame Ionization Detector (FFID) equipment to measure the cyclic THC emission characteristics.

  • PDF

Temperature transients of piston of a Camless S.I Engine using different combustion boundary condition treatments

  • Gill, KanwarJabar Singh;Singh, Khushpreet;Cho, H.M.;Chauhan, Bhupendra Singh
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.221-230
    • /
    • 2014
  • Simplified finite element model of spark ignition (SI) engine to analyse combustion heat transfer is presented. The model was discredited with 3D thermal elements of global length 5 mm. The fuel type is petrol. Internal nodal temperature of cylinder body is defined as 21000C to represent occurrence of gasoline combustion. Material information and isotropic material properties are taken from published report. The heat transfer analysis is done for the instant of combustion. The model is validated by comparing the computed maximum temperature at the piston surface with the published result. The computed temperature gradient at the crucial parts are plotted and discussed. It has been found that the critical top surface suffered from thermal and the materials used to construct the engine parts strongly influenced the temperature distribution in the engine. The model is capable to analyze heat transfer in the engine reasonably and efficiently.