• 제목/요약/키워드: SI (Spark Ignition)

검색결과 95건 처리시간 0.022초

LPG-DME 혼합연료를 사용하는 전기점화 기관의 연소특성 연구 (Combustion Characteristics Study of an SI Engine Operated with DME Blended LPG Fuel)

  • 이석환;오승묵;최영;강건용;최원학;차경옥
    • 한국가스학회지
    • /
    • 제12권3호
    • /
    • pp.7-12
    • /
    • 2008
  • 본 연구에서는 DME가 함유된 LPG 연료를 불꽃 점화 기관에서 적용 가능 여부를 실험적으로 살펴보고 있다. LPG와 DME가 함유된 혼합연료로 엔진 구동시 엔진출력, 배출가스 특성, 연소안정성 등의 항목에 대한 실험을 $1200{\sim}5200\;rpm$에서 수행하였다. 결과를 살펴보면 20% 내외의 범위에서 DME를 혼합하는 경우 안정된 연소성능을 얻을 수 있었으며 10%까지는 엔진 출력 저하가 거의 없다. 하지만 혼합율이 증가할수록 DME 연료는 LPG보다 에너지 밀도가 낮으므로 출력이 감소하고 제동연료소비율은 증가하는 현상을 보인다. LPG/DME 혼합연료는 향후 DME 시장을 넓혀 나가는 최선의 방법이 될 것이다.

  • PDF

가솔린 기관의 시동조건에 따른 HC의 배출특성 (Characteristics of HC Emissions by Starting Conditions in an SI Engine)

  • 김성수
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.1-9
    • /
    • 2004
  • During the SI engine starting up, starting conditions directly contribute to the unburned hydrocarbon emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame ionization Detector (FRFID). The result showed that HC emissions, which were emitted at the cold coolant and catalyst temperature, were generated much higher than those of hot coolant and catalyst temperatures. In additions, fuel injection skips reduced highly HC emissions. It is convinced that optimized fuel injection skip method according to coolant and catalyst temperatures could be applied to reduce HC emissions during the SI engine starts.

적응 상태 관측자를 이용한 SI 엔진 속도제어 (Adaptive Observer Based Speed Control of SI Engines)

  • 김응석;이효섭;이형찬;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.693-695
    • /
    • 1999
  • In this paper, the adaptive nonlinear state observer is proposed to estimate the internal states and the nonlinearities of 4-cylinders 4-cycles spark ignition(SI) engines. The observed states and nonlinearities will be used to design the adaptive feedback linearization controller for reducing the fluctuation of idle speed. The simulation results are represented to show the validity of the proposed nonlinear observer-based adaptive controller.

  • PDF

A Review on Spray Characteristics of Biobutanol and Its Blended Fuels in IC engines

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제21권3호
    • /
    • pp.144-154
    • /
    • 2016
  • This review will be concentrated on the spray characteristics of biobutanol and its blends fuels in internal combustion engines including compression ignition, spark ignition and gas turbine engines. Butanol can be produced by fermentation from sucrose-containing feedstocks, starchy materials and lignocellulosic biomass. Among four isomers of butanol, n-butanol and iso-butanol has been used in CI and SI engines. This is due to higher octane rating and lower water solubility of both butanol compared with other isomers. The researches on the spray characteristics of neat butanol can be classified into the application to CI and SI engines, particularly GDI engine. Two empirical correlations for the prediction of spray angle for butanol as a function of Reynolds number was newly suggested. However, the applicability for the suggested empirical correlation is not yet proved. The butanol blended fuels used for the investigation of spray characteristics includes butanol-biodiesel blend, butanol-gasoline blend, butano-jet A blend and butanol-other fuel blends. Three blends such as butanol/ethanol, butanol/heptane and butanol/heavy fuel oil blends are included in butanol-other fuel blends. Even though combustion and emission characteristics of butanol/diesel fuel blend in CI engines were broadly investigated, study on spray characteristics of butanol/diesel fuel blend could not be found in the literature. In addition, the more study on the spray characteristics of butanol /gasoline blend is required.

4-Valve SI 엔진의 Knock 특성 및 Knock 발생부위 측정 (Knock Characteristics and Measurement of Knock Location in a 4-Valve SI Engine)

  • 이경환;이시훈
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.153-161
    • /
    • 1998
  • The knock in a spark ignition engine has been investigated to avoid the damage to the engine and unpleasant feeling caused by the pressure waves propagating across the combustion chamber. Knock intensity and knock onset angle were used as physical parameters to quantify the knock characteristics. The knock intensity is defined as a peak to peak value of the bank pass filtered combustion pressure signal and the knock onset angle is determined as the crank angle at which this signal exceeded the threshold level on each cycle. The cyclic variation of knock in four valve single cylinder engine was investigated with these two parameters. The location of autoignition was also examined by ion probes in the cylinder head gasket and squish region in the combustion chamber. For this measurement, a single cylinder engine was modified to accept the pressure transducer, 18 ion probes in the squish region and 8 ion probes in the specially designed PCB (Printed \ulcornerCircuit Board) cylinder head gasket.

  • PDF

가솔린엔진용 E-EGR 밸브 특성에 관한 연구 (A Study on the Characteristics of the Electronic EGR Valve for Gasoline Engine)

  • 박철웅;김창기
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.127-133
    • /
    • 2008
  • Since the 1960's, exhaust gas recirculation(EGR) has been used effectively in spark ignition(SI) engines to control the exhaust emissions of the oxides of nitrogen(NOx). The most important requirements for the application of EGR systems to conventional SI engines are controllable flow rate and good dynamic response. In order to evaluate the characteristics of the electronic EGR valve, a test bench which is consisted of blower, heater, air flow meter and driving unit for electronic EGR valve was set up to simulate engine operating conditions. During the tests, the valve actuation parameters were controlled and the valve lifts and flow rates were measured to infer the characteristics of EGR valve. The results confirmed the capabilities of mathematical analysis and it seems that the correction for the valve lift and potentiometer output is necessary to achieve precise control of EGR rates.

불꽃점화 기관에 외란에 안정한 제어기 연구 (A Study on the Controller having Disturbances in Spark Ignition Engine)

  • 이영춘;정진호;윤여홍;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.153-156
    • /
    • 2000
  • This paper presents an PID type fuzzy based method for nohnear engine idle controller The output is a duty cycle(DC) for driving a idle speed cont개l valve(1SCV). For precise control of SI engine, the CPS sensor and coolant temperature are used. Visual C* language is used to make simulation panel for the fast and precise idle speed control. The dSPACE board and supported Control desk program is used in experiment ta the same purpose as simulation. The experimental results have a good agreement with simulation ones.

  • PDF

메탄/합성가스 혼합물에 의한 발전용 SI 가스엔진의 성능에 관한 연구 (Study on the Performance of a Spark Ignition Gas Engine for Power Generation fueled by the Methane/Syngas Mixture)

  • 차효석;허광범;송순호
    • 한국가스학회지
    • /
    • 제19권5호
    • /
    • pp.7-12
    • /
    • 2015
  • 현재까지 수소는 주로 천연가스의 연료 개질에 의해 발생된 합성가스를 이용해 생산된다. 합성가스 내의 수소 수율을 높이기 위해선 추가적인 공정이 필요하다. 하지만, 수소의 수율 향상을 위한 공정에는 별도의 에너지원과 경제적 비용이 수반된다. 그러므로 보다 효율적으로 합성가스를 활용하기 위해 그 자체로 혼합물로 이용하는 방법에 관한 관련 연구들이 이루어지고 있다. 본 연구에서는 30kW급 발전용 스파크 점화 가스엔진에서 메탄/합성가스 혼합물이 엔진의 주요 성능에 미치는 영향을 조사하였다. 그 결과 메탄/합성가스 혼합물에 의해서 최대 실린더 내부 압력과 그 때의 크랭크 각도와 같은 엔진 내 연소 현상은 개선되는 것으로 나타났다. 이를 통해 메탄-합성가스 혼합물의 연료 전환 효율은 메탄-수소 혼합물의 약 98% 수준으로 향상시킬 수 있고 질소산화물 배출량은 메탄-수소 혼합물의 약 12%만큼 감소시킬 수 있다.

바이오에탄올 SI 엔진에서 에탄올-가솔린 연료 혼합비율에 따른 희박연소 및 배기 특성 (Effect of Ethanol-gasoline Blending Ratio on Lean Combustion and Exhaust Emissions Characteristics in a SI Engine Fueled with Bioethanol)

  • 윤승현;김대성;이창식
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.82-88
    • /
    • 2011
  • Lean combustion and exhaust emission characteristics in a ethanol fueled spark-ignited engine according to ethanol-gasoline fuel blending ratio were investigated. The test engine was $1591cm^3$ and 10.5 of compression ratio SI engine with 4 cylinders. In addition, lambda sensor system was connected with universal ECU to control the lambda value which is varied from 1.0 to 1.5. The engine performance and lean combustion characteristics such as brake torque, cylinder pressure and rate of heat release were investigated according to ethanol-gasoline fuel blending ratio. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), nitrogen oxides ($NO_x$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque, cylinder pressure and the stability of engine operation were increased as ethanol blending ratio is increased. Brake specific fuel consumption (BSFC) was increased in higher ethanol blending ratio while brake specific energy consumption (BSEC) was decreased in higher ethanol blending ratio. The exhaust emissions were decreased as ethanol blending ratio is increased under overall experimental conditions, however, some specific exhaust emission characteristics were mainly influenced by lambda value and ethanol-gasoline fuel blending ratio.

고속 단발 가시화 스파크 점화 엔진에서의 연소 특성에 대한 선회효과 연구 (Effects of Swirl on Flame Development and Late Combustion Characteristic in a High Speed Single-Shot Visualized SI Engine)

  • 김성수;김승수
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.54-64
    • /
    • 1995
  • The effects of swirl on early flame development and late combustion characteristic were investigated using a high speed single-shot visualized 51 engine. LDV measurements were performed to get better understanding of the flow field in this combustion chamber. Spark plugs were located at half radius (R/2) and central location of bore. High speed schlieren photographs at 20,000 frames/sec were taken to visualize the detailed formation and development of the flame kernel with cylinder pressure measurements. This study showed that high swirl gave favorable effects on combustion-related performances in terms of the maximum cylinder pressure and flame growth rate regardless of spark position. However, at R/2 ignition the low swirl shown desirable effects at low engine speed gave worse performances as engine speed increased than without swirl. There were distinct signs of slow-down in flame growth during the period when the flame front expanded from 2.5mm in radius until it reached 5.0mm apparently due to the presence of ground electrode. There seemed to be heat transfer effect on the flame expansion speed which was evidenced in high swirl case by the slowdown of the late flame front presumably caused by relatively large heat loss from burned gas to wall compared with low- or no-swirl cases.

  • PDF