Scalable extension of High Efficiency Video Coding (SHVC) standard uses the up-sampled residual data from the base layer to make a residual data in the enhancement layer. This paper describes an efficient algorithm for improving coding gain by using the filtered residual signal of base layer in the Scalable extension of High Efficiency Video Coding (SHVC). The proposed adaptive filter selection mechanism uses the smoothing and sharpening filters to enhance the quality of inter-layer prediction. Based on two filters and the existing up-sampling filter, a rate-distortion (RD)-cost fuction-based competitive scheme is proposed to get better quality of video. Experimental results showed that average BD-rate gains of 1.5%, 2.1%, and 1.7% for Y, U and V components, respectively, were achieved, compared with SHVC reference software 5.0, which is based on HEVC reference model (HM) 13.
In this paper, we propose a reference picture generation method for Inter-layer prediction based deep learning to improve the SHVC coding performance. A description will be given of a structure for performing filtering using a VDSR network on a DCT-IF based upsampled picture to generate a new reference picture and a training method for generating a reference picture between SHVC Inter-layer. The proposed method is implemented based on SHM 12.0. In order to evaluate the performance, we compare the method of generating Inter-layer predictor by applying dictionary learning. As a result, the coding performance of the enhancement layer showed a bitrate reduction of up to 13.14% compared to the method using dictionary learning, a bitrate reduction of up to 15.39% compared to SHM, and a bitrate reduction of 6.46% on average.
In this paper, we propose a texture map compression method based on the hierarchical coding method of SHVC to support the scalability function of dynamic mesh compression. The proposed method effectively eliminates the redundancy of multiple-resolution texture maps by downsampling a high-resolution texture map to generate multiple-resolution texture maps and encoding them with SHVC. The dynamic mesh decoder supports the scalability of mesh data by decoding a texture map having an appropriate resolution according to receiver performance and network environment. To evaluate the performance of the proposed method, the proposed method is applied to V-DMC (Video-based Dynamic Mesh Coding) reference software, TMMv1.0, and the performance of the scalable encoder/decoder proposed in this paper and TMMv1.0-based simulcast method is compared. As a result of experiments, the proposed method effectively improves in performance the average of -7.7% and -5.7% in terms of point cloud-based BD-rate (Luma PSNR) in AI and LD conditions compared to the simulcast method, confirming that it is possible to effectively support the texture map scalability of dynamic mesh data through the proposed method.
IEIE Transactions on Smart Processing and Computing
/
v.2
no.6
/
pp.345-349
/
2013
This paper proposes a simplified generalized residual prediction (GRP) that reduces the computational complexity of spatial scalability in scalable high efficiency video coding (SHVC). GRP is a coding tool to improve the inter prediction by adding a residual signal to the inter predictor. The residual signal was created by carrying out motion compensation (MC) of both the enhancement layer (EL) and up-sampled reference layer (RL) with the motion vector (MV) of the EL. In the MC process, interpolation of the EL and the up-sampled RL are required when the MV of the EL has sub-pel accuracy. Because the up-sampled RL has few high frequency components, interpolation of the up-sampled RL does not give significantly new information. Therefore, the proposed method reduces the computational complexity of the GRP by skipping the interpolation of the up-sampled RL. The experiment on SHVC software (SHM-2.0) showed that the proposed method reduces the decoding time by 10 % compared to conventional GRP. The BD-rate loss of the proposed method was as low as 1.0% on the top of SHM-2.0.
In this paper, we design and implement a 3D scalable video codec by combining the Scalable HEVC (SHVC) and the 3D-HEVC which are the extended standards of High Efficiency Video Coding (HEVC). The proposed 3D scalable video codec supports the view and spatial scalabilities which are the properties of 3D-HEVC and SHVC, respectively. In the proposed 3D scalable codec, the high-level syntaxes are designed to support the multiple scalabilities. In the computer simulation section, we confirmed the conformance of the proposed codec and analyzed the performance of the proposed codec.
In this paper, we propose a scalable coding method for high dynamic range (HDR) and standard dynamic range (SDR) videos based on Scalable High Efficiency Video Coding (SHVC). The proposed method has multi-layer coding architecture that consists of base layer for SDR videos and enhancement layer for HDR videos to support the backward compatibility with legacy codec and display devices. Also, to improve coding efficiency of enhancement layers, a global inverse tone mapping is applied to the reconstructed SDR video and the compensated frames are referred for coding of the enhancement layer. The proposed method is found to achieve BD-Rate gain of 43.0% on average (maximum 76.3%) for the enhancement layer and 15.7% on average (maximum 31%) for dual-layer against the SHM 7.0 reference software.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.97-100
/
2014
다양한 동영상 콘텐츠를 이용하는 사용자들의 단말기 성능이나 네트워크 상황, 또는 단말기의 해상도 등에 실시간으로 대응할 수 있는 영상 압축 방법으로 스케일러블 영상 코딩 (Scalable Video Coding, SVC)[1]을 사용하고 있다. 최근 JCT-VC(Joint Joint Collaborative Team on Video Coding)에서는 초고해상도를 타겟으로 하는 동영상 압축기술인 HEVC(Efficiency Video Coding)를 기반으로한 Scaleable HEVC(SHVC)[3]를 표준화 중에 있다. SHVC는 공간적(Spatial), 시간적(Temporal), 화질적(SNR) 스케일러빌러티를 제공을 하며, HEVC v.1에 비해 높은 복잡도를 가진다. 본 논문에서는 SHVC의 공간적 스케일러빌러티의 부호화 속도 개선을 위한 알고리즘 개발에 앞서 제한적 실험을 통한 통계적 분석을 하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.11a
/
pp.190-192
/
2013
최근 HD(High Definition)화질 및 UHD(Ultra High Definition)화질과 같은 고품질 방송 서비스가 등장하고, 무선 네트워크 기술의 발달로 스마트폰, 태블릿PC 등과 같은 다양한 휴대용 멀티미디어 기기들이 존재함에 따라, 소비자들은 다양한 환경에서 고해상도 영상을 고품질로 사용하기를 원하고 있다. 따라서 스케일러빌러티의 현실적 필요성이 점점 대두되고 있으며, 이에 따라 ISO/IEC의 MPEG(Moving Picture Experts Group)와 ITU-T의 VCEG(Video Coding Experts Group)이 공동으로 결성한 Joint Collaborative Team on Video Coding(JCT-VC)에 의해 시간, 공간, 화질 등이 확장성을 제공하는 Scalable Video Coding(SVC)의 표준화가 진행되고 있다. 이에 본 논문은 공간적, 시간적, 화질적 스케일러빌러티(Scalability)를 제공하기 위한 SHVC의 표준 기술들에 대해 설명하고, 기존 단일 계층 부호화 방식(Single Video Coding)으로 서로 다른 해상도의영상을 Simulcast부호화한 결과와 비교하여 SHVC의 부호화한 결과와 비교하여 SHVC의 보호화 효율에 대한 성능을 분석 하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.92-95
/
2018
가상 현실을 위한 360 영상 비디오 전송기술이 활발히 연구되고 있다. 그러나 현재 가상현실 기기의 컴퓨팅 연산능력과 대역폭은 고화질 360 영상을 재생하기에 한계가 있다. 이 한계를 극복하기 위해 본 논문은 High Efficiency Video Coding (HEVC)와 Scalability Extension of HEVC (SHVC)를 활용하여 타일 기반의 360 도 영상 전송 기법을 제안한다. 제안하는 HEVC 와 SHVC 인코더는 타일을 독립적으로 전송 할 수 있는 비트 스트림을 생성한다. 제안하는 추출기는 사용자 시점에 해당하는 타일의 비트 스트림을 추출한다. 제안하는 기법에 의해 추출된 SHVC 비트스트림의 기본계층은 전체화면을 나타내며, 강화계층은 사용자 시점에 해당하는 타일로 구성된다. 제안하는 HEVC 인코더를 사용할 때에는 저화질과 고화질을 따로 인코딩하여 고화질만 사용자 시점에 해당하는 타일을 추출한다. 전체화면을 고화질로 보내는 대신에 전체화면을 저화질로, 사용자화면을 고화질로 보내기 때문에 제안하는 기법은 디코더의 컴퓨팅 연산과 네트워크 bitrate 를 대폭 줄일 수 있다. 본 제안 기법의 실험 결과는 전체화면 전송 대비 47%이상의 bitrate 를 줄인다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.505-509
/
2020
포인트 클라우드 콘텐츠는 3 차원 공간에 수십만 개가 넘는 점들의 집합으로 이루어진 3D 데이터로 각 점들은 3 차원 공간의 좌표 데이터를 필요로 하고 추가적으로 색 (color), 반사율 (reflectance), 법선 벡터 (normal vector) 등과 같은 속성으로 구성되어 있다. 기존 2D 영상보다 한단계 높은 차원을 가진 3D 포인트 클라우드를 사용자에게 효율적으로 제공하기 위해서 고효율의 압축 기술 연구가 진행되고 있는데, 다양한 장치에서 발생하는 성능 차이에 구애 받지 않고 사용자에게 알맞은 서비스를 제공하기 위해서는 다양한 확장성에 대한 연구가 필요하다. 이에 본 논문에서는 포인트 클라우드 압축에 사용되는 Video-based Point Cloud Compression (V-PCC) 구조에 SHVC 코덱을 적용하여, 밀도 확장성을 갖는 포인트 클라우드 압축 비트스트림을 생성하는 방안을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.