• Title/Summary/Keyword: SHPB test

Search Result 43, Processing Time 0.025 seconds

Evaluation of Material Properties Variations of Cementitious Composites under High Strain Rate by SHPB Test and Image Analysis (SHPB 시험 및 영상분석을 통한 고변형율 속도 하의 시멘트 복합체 물성 변화 평가)

  • Cho, Hyun-Woo;Lee, Jang-Hwa;Min, Ji-Young;Park, Jung-Jun;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.83-91
    • /
    • 2015
  • Under impact or blast loads, concrete behaves with different mechanical properties comparing to the static loading conditions. In other words, with high strain rate, mechanical properties of concrete vary significantly. To evaluate the compressive characteristics of concrete with high strain rate, SHPB(Split Hopkinson Pressure Bar) test is typically used. However, because SHPB test method has been developed for metallic materials, it is necessary to verify the applicability of SHPB for brittle materials such as concrete. Also, there have been little researches on the evaluations of mechanical characteristics of UHPC under high strain rate conditions. This study has been performed to evaluate and analyse the compressive characteristics of plain concrete and UHPC with SHPB test apparatus. Also, to verify the applicability of SHPB test for concrete, direct displacement image analysis with high speed camera was performed for the comparisons with analytical solutions for SHPB test.

Design and Fabrication of Split Hopkinson Pressure Bar for Dynamic Mechanical Properties of Self-reinforced Polypropylene Composite (폴리프로필렌 자기 보강 복합재의 동적 물성 구축을 위한 Split Hopkinson Pressure Bar의 설계 및 제작)

  • Kang, So-Young;Kim, Do-Hyoung;Kim, Dong-Hyun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.221-226
    • /
    • 2018
  • The Split Hopkinson Pressure Bar(SHPB) has been the most widely used apparatus to characterize dynamic mechanical behavior of materials at high strain rates between $100s^{-1}$ and $10,000s^{-1}$. The SHPB test is based on the wave propagation theory which was developed to give the stress, strain and strain rate in the specimen using the strains measured in the incident and transmission bars. In this study, the SHPB was directly designed and fabricated for the dynamic mechanical properties of fiber reinforced plastic (FRP) composites. In addition, this apparatus was verified for the validity by comparing the strain data obtained through the high speed camera and Digital Image Correlation(DIC) during the high strain rate compression test of the self-reinforced polypropylene composite (SRPP) specimen.

The effect of temperature in high temperature SHPB test (고온 SHPB실험에서 온도의 영향)

  • Park, Kyoung-Joon;Yang, Hyun-Mo;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.349-354
    • /
    • 2001
  • The split Hopkinson pressure bar has been used for a high strain rate impact test. Also it has been developed and modified for compression, shear, tension, elevated temperature and subzero tests. In this paper, SHPB compression tests have been performed with pure titanium at elevated temperatures. The range of temperature is from room temperature to $1000^{\circ}C$ with interval of $200^{\circ}C$. To raise temperature of the specimen, a radiant heater which is composed of a pair of ellipsoidal cavities and halogen lamps is developed at high temperature SHPB test. There are some difficulties in a high temperature test such as temperature gradient, lubrication and prevention of oxidation of specimen. The temperature gradient of specimen is affected by the variation of temperature. Barreling occurred at not properly lubricated specimen. Stress-strain relations of pure titanium have been obtained in the range of strain rate at $1900/sec{\sim}2000/sec$ and temperature at $25^{\circ}C{\sim}1000^{\circ}C$.

  • PDF

An Investigation into the effect of friction in the split hopkinson pressure bar (SHPB) test by numerical experiments (수치해석을 이용한 SHPB 시험의 마찰영향 분석)

  • Cha, Sung-Hoon;Shin, Myoung-Soo;Shin, Hyun-Ho;Kim, Jong-Bong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.204-209
    • /
    • 2008
  • The interest in the mechanical behavior of materials at high strain rates has increased in recent years, and by now it is well known that mechanical properties can be strongly influenced by the speed of applied load. The split Hopkinson pressure bar (SHPB) has been widely used to determine mechanical properties of materials at high loading rates. However, to ensure test reliability, measurement error source must be accounted for and eliminated. During experiment, the specimens were located between the incident and the transmit bar. The presence of contact frictions between the test bars and specimen may cause errors. In this work, numerical experiments were carried out to investigate the effect of friction on test results. In SHPB test, the measured stress by the transmitted bar is assumed to be flow stress of the test specimen. Through the numerical experiments, however, it is shown that the measured stress by the transmit bar is axial stress components. When, the contact surface is frictionless, the flow stress and the axial stress of the specimen are about the same. When the contact surface is not frictionless, however, the flow stress and the axial stress are not the same anymore. Therefore, the measured stress by the transmitted bar is not flow stress. The effect of friction on the difference between flow stress and axial stress is investigated.

  • PDF

A Study on dynamic Fracturing Behavior of Anisotropic Granite by SHPB Test (스플릿 흡킨슨 바(SHPB)를 이용한 이방성 화강암의 동적파괴거동 연구)

  • Choi, Mi-Jin;Cho, Sang-Ho;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.214-218
    • /
    • 2008
  • Dynamic fracturing of anisotropic granite was investigated by SHPB (Split Hopkinson Pressure Bar). Energy absorption during the test and maximum stress were increased as strain rate increased. Maximum stresses in every direction were dependent on the strain rate but not so sensitive to anisotropy. Elastic wave velocity was decreased as strain rate increased and dependent on strain rate in every direction. Especially, elastic wave velocity decreased more rapidly in a strong rock.

Compressive Deformation Behaviors of Aluminum Alloy in a SHPB Test (SHPB 시험과 알루미늄 합금의 압축 변형거동)

  • Kim, Jong-Tak;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.617-622
    • /
    • 2012
  • Structures are often subjected to various types of loading such as static, dynamic, or impact loading. Therefore, experimental and numerical methods have been employed to find adequate material properties according to the conditions. The Split-Hopkinson pressure bar (SHPB) test has frequently been used to test engineering materials, particularly those used under high strain rates. In this study, the compressive deformation behaviors of aluminum alloy under impact conditions have been investigated by means of the SHPB test. The experimental results were then compared with those of finite element analyses. It was shown that reasonably good agreement with the true stress-strain curves was obtained at strain rates ranging from 1000 $s^{-1}$ to 2000 $s^{-1}$. When the strain rate increased by 30%, the peak stress in particular increased by 17%, and the strain also increased by 20%.

Dynamic Behavior Characteristic Test of Structural Aluminium Alloy Materials using SHPB (SHPB를 이용한 구조용 AL합금재의 동적거동 특성 시험에 관한 연구)

  • Hur, S.;Kim, D.S.;Koo, J.S.;Kang, H.S.;Hong, S.I.;Chung, D.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.419-423
    • /
    • 2001
  • It is important to know the mechanical properties of the materials under dynamic load. The mechanical properties of most materials are influenced to some extent by strain rate. One of the reliable test device for determining the mechanical properties of materials at high strain rate is Split Hopkinson Pressure bar. In this paper, we conducted the mechanical properties test for the aluminium alloy 6063 and 6061 using the SHPB device.

  • PDF

Numerical and Experimental Verification of Stress Wave Control Effect in SHPB Experiment using Pulse Shaper (Pulse Shaper를 이용한 SHPB 실험 응력파 제어 효과의 해석 및 실험적 검증)

  • Kim, Y.H.;Woo, M.A.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.314-322
    • /
    • 2017
  • In the high-speed forming analysis, dynamic material properties considering a high strain rate are required. The split Hopkinson pressure bar (SHPB) experiment was performed for measuring dynamic material properties under high strain rate. The pulse shaping method was used to improve the accuracy of the SHPB experiment. A pulse shaper attached to the front of the incident bar was used for specimen dynamic stress equilibrium through stress wave control. Numerical analysis and SHPB test were performed to verify whether the pulse shaper affects the dynamic stress equilibrium in copper and Al6061 specimens. The results of SHPB test and numerical analysis show that the pulse shaper contributes to the dynamic stress equilibrium. Based on the improved stress equilibrium using a pulse shaper, the flow stress curves for copper and Al6061 materials were obtained at strain rates of 1344.4/sec and 1291.6/sec, respectively.

High-Strain-Rate Deformation of Fe-6.5wt.%Si Alloys using a Split Hopkinson Pressure Bar Technique (홉킨슨 압력봉법을 이용한 Fe-6.5wt.%Si 합금의 고변형률속도 거동)

  • Yoon, Young-Ki;Yoon, Hi-Seak;Umakoshi, Yukichi;Yasuda, Hiroyuki Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1073-1081
    • /
    • 2001
  • Many researches have published numerous papers about the high-strain-rate obtained from Split Hopkinson Pressure Bar(SHPB) tests. And 6.5wt%Si steel is widely known as an excellent magnetic material because its magnetostriction is nearly zero. Single crystals are prepared by the Floating Zone(FZ) method, which melts the alloy by the use of a high temperature electron beam in a pure argon gas condition. In this paper, the fracture behavior of the poly crystals and single crystals (DO$_3$phase) of Fe-6.5wt%Si alloy by SHPB test is observed. The comparison of high-strain-rate results with static results was done. Obtained main results are as follows: (1) Fe-6.5wt%Si alloy has higher strength at high-strain-rate tensile. SHPB results of polycrystal are twice as high as static results. (2) From the fractography, the cleavage steps are remarkably reduced in the SHPB test compared with the static test.

Study on the Split Hopkinson Pressure Bar Apparatus for Measuring High-strain Rate Tensile Properties of Plastic Material (플라스틱 소재의 고 변형률 인장특성 평가를 위한 홉킨스바(Split Hopkinson Pressure Bar) 측정 장비에 관한 연구)

  • Han, In-Soo;Lee, Se-Min;Kim, Kyu-Won;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.196-200
    • /
    • 2022
  • Split Hopkinson Pressure Bar (SHPB) is a general test equipment for measuring the mechanical properties of high modulus metal and composite materials at high strain rate. However, for the soft plastic material, it is difficult to hold the specimen and achieve dynamic stress equilibrium due to the weak transmitted signals. In this study, SHPB test apparatus were designed to measure accurately the high strain rate stress-strain curve of the soft plastic materials by changing the incident bar materials and the shape of the specimen holder parts. In addition, to verify the high strain-rate tensile strain data obtained from SHPB, the strain distribution of the specimen was measured and analyzed with a high-speed camera and the digital image correlation (DIC), which was compared with the strain history measured from SHPB.