• Title/Summary/Keyword: SHOULDER AXIS

Search Result 69, Processing Time 0.021 seconds

Change in Rotational Motion of the Shoulder and Hip According to the Method Used for a 2-Handed Backhand Stroke in Tennis (테니스 양손 백핸드 스트로크 방법에 따른 어깨와 힙의 회전운동 변화)

  • Kang, Sang-Hack
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • The purpose of this study was to examine differences between players who bend the left elbow and those who stretch it during the forward swing from BST to BC in a 2-handed backhand stroke among outstanding high school tennis players, and to assess the detailed 3D rotational kinematic characteristics of the shoulder and the hip. Statistically significant differences were observed between groups in the longitudinal axis rotation angle of the shoulder and the angle between the shoulder and the arm at BST, and in the side to side movement of the shoulder, the up and down movement of the hip, the side tilt angular velocity of the shoulder, the side tilt angular velocity of the hip, and the front tilt angular velocity of the hip at BC. The difference in the longitudinal axis rotation angle of the shoulder between the 2 groups suggests a difference in the flexibility of the joint in the shoulder arm racquet system. The longitudinal axis rotation angular velocity of the shoulder reached its peak at 75 % of the duration of the analyzed segment and then decreased little by little until BC. This time is considered the stage for increasing the angular velocity of the upper arm, the forearm, the hand and then the racquet, which are more distal segments than the shoulder.

Osteokinematic analysis during shoulder abduction using the C-arm

  • Lee, Seung Hoo;Kim, Younghoon;Lee, Dong Geon;Lee, Kyeong-Bong;Lee, Gyu Chang
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.4
    • /
    • pp.208-213
    • /
    • 2017
  • Objective: Despite reliable evidence of abnormal scapular motions increases, there is not yet sufficient evidence of abnormal humeral translations. This study aims to analyze the motion of the humeral head toward the scapula when the shoulder is actively abducted using the C-arm. Design: A case report. Methods: The participant was a healthy man without any limitation and pain during shoulder movement. The participant's shoulder was abducted; this movement in the frontal plane was measured using a C-arm (anterior-posterior view) and was analyzed with computer-aided design. The starting posture was $15^{\circ}$, and as the participant abducted his shoulder measurements were taken and analyzed at $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$, and ending at $165^{\circ}$. A line was drawn perpendicularly to the line connecting the humeral head axis to the glenoid, and another line was drawn perpendiculary to the line connecting the scapular axis to the glenoid. The distance between the two lines measured is defined as the e value. Results: At the starting posture ($15^{\circ}$), the central axis of the humeral head was located 1.92 mm inferior to the central axis of the scapula. The humeral head was superiorly translated from the starting posture to $120^{\circ}$, and then, showed an inferior translation to the ending posture ($165^{\circ}$). Conclusions: The results of this study showed that the humeral head moved upward from the starting posture ($15^{\circ}$) up to $120^{\circ}$ indicating, superior translation, and it moved downward when the posture was past $120^{\circ}$, indicating inferior translation.

Another Glenoid Measurements for Shoulder Surgery

  • Jeong, Yeon-Seok;Yum, Jae-Kwang;Lee, Jun-Seok
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.4
    • /
    • pp.179-185
    • /
    • 2018
  • Background: We analyzed the angle between the glenoid anterior surface and glenoid axis, the range of the glenoid apex and the location of the glenoid apex for assistance during shoulder surgery. Methods: Sixty-two patients underwent a computed tomography of the shoulder with a proximal humerus fracture. In the range of the glenoid apex, the ratios of the distribution of triangles with a Constant anterior and posterior area of the glenoid were measured. The location of glenoid apex was confirmed as the percentage of the position with respect to the upper part of the glenoid with the center of the part, analyzed the angle between the glenoid anterior surface and glenoid axis was measured. Results: The angle between the glenoid anterior surface and glenoid axis was $19.80^{\circ}{\pm}3.88^{\circ}$. The location of the glenoid apex is $60.36%{\pm}9.31%$, with the upper end of the glenoid as the reference. The range of the glenoid apex was $21.16%{\pm}4.98%$. When the height of the glenoid becomes smaller, the range of the glenoid apex tends to become larger (p=0.001) and the range of the glenoid apex becomes wider (p=0.001) as the glenoid width narrows. Conclusions: We believe the anatomical measurements of the glenoid will be helpful for a more accurate insertion in glenoid component. It is thought that more accurate insertion is possible if we can set other anatomical measurements using computed tomography imaging of the glenoid which can develop into the study of other anatomical measurements.

3-D Kinematic comparison of One Hand Backhand Stroke and Two Hand Backhand Stroke in Tennis (테니스 한손 백핸드 스트로크와 양손 백핸드 스트로크 동작의 3차원 운동학적 비교 분석)

  • Choi, Ji-Young;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.85-95
    • /
    • 2005
  • The purpose of this study was to investigate the relations between the segments of the body, the three dimensional anatomical angle during One Hand Backhand Stroke and Two Hand Backhand in tennis. For the movement analysis three dimensional cinematographical method(APAS) was used and for the calculation of the kinematic variables a self developed program was used with the LabVIEW 6.1 graphical programming(Johnson, 1999) program. By using Eular's equations the three dimensional anatomical Cardan angles of the joint and racket head direction were defined. 1. In three dimensional maximum linear velocity of racket head the X axis and Y axis(horizontal direction) showed $-11.04{\pm}2.69m/sec$, $-9.31{\pm}0.49m/sec$ before impact, the z axis(vertical direction) maximum linear velocity of racket head did not show at impact but after impact this will resulted influence upon hitting ball. It could be suggest that Y axis velocity of racket head influence on ball direction and z axis velocity influence on ball spin after impact. The stance distance between right foot and left foot was mean $75.4{\pm}5.86cm$ during one hand backhand stroke and $72.6{\pm}4.67cm$ during two hand backhand stroke. 2. The three dimensional anatomical angular displacement of trunk in interna rotation-external rotation showed most important role in backhand stroke. and is follwed by flexion-extension. the three dimensional anatomical angular displacement of trunk did not show significant difference between one hand backhand stroke and two hand backhand stroke but the three dimensional anatomical angular displacement of trunk was bigger than one hand backhand stroke. 3. while backhand stroke, the flexion-extension and adduction-abduction of right shoulder joint showed significant different between one hand backhand stroke and two hand backhand stroke. the three dimensional anatomical angular displacement of right shoulder joint showed more flex and abduct in one hand backhand stroke. 4. The three dimensional anatomical angular displacement of left shoulder showed flexion, adduction, and external rotation at impact. after impact, The angular displacement as adduction-abduction of left shoulder changed motion direction as abduction. angular displacement of left shoulder as flexion-extension showed bigger than the right shoulder.

Improved Wearability of the Upper Limb Rehabilitation Robot NREX with respect to Shoulder Motion (어깨의 움직임을 중심으로 한 상지재활로봇 NREX의 착용감 개선)

  • Song, Jun-Yong;Lee, Seong-Hoon;Song, Won-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.318-325
    • /
    • 2019
  • NREX, an upper limb exoskeleton robot, was developed at the National Rehabilitation Center to assist in the upper limb movements of subjects with weak muscular strength and control ability of the upper limbs, such as those with hemiplegia. For the free movement of the shoulder of the existing NREX, three passive joints were added, which improved its wearability. For the flexion/extension movement and internal/external rotation movement of the shoulder of the robot, the ball lock pin is used to fix or rotate the passive joint. The force and torque between a human and a robot were measured and analyzed in a reaching movement for four targets using a six-axis force/torque sensor for 20 able-bodied subjects. The addition of two passive joints to allow the user to rotate the shoulder can confirm that the average force of the upper limb must be 31.6% less and the torque must be 48.9% less to perform the movement related to the axis of rotation.

Difference in glenoid retroversion between two-dimensional axial computed tomography and three-dimensional reconstructed images

  • Kim, Hyungsuk;Yoo, Chang Hyun;Park, Soo Bin;Song, Hyun Seok
    • Clinics in Shoulder and Elbow
    • /
    • v.23 no.2
    • /
    • pp.71-79
    • /
    • 2020
  • Background: The glenoid version of the shoulder joint correlates with the stability of the glenohumeral joint and the clinical results of total shoulder arthroplasty. We sought to analyze and compare the glenoid version measured by traditional axial two-dimensional (2D) computed tomography (CT) and three-dimensional (3D) reconstructed images at different levels. Methods: A total of 30 cases, including 15 male and 15 female patients, who underwent 3D shoulder CT imaging was randomly selected and matched by sex consecutively at one hospital. The angular difference between the scapular body axis and 2D CT slice axis was measured. The glenoid version was assessed at three levels (midpoint, upper one-third, and center of the lower circle of the glenoid) using Friedman's method in the axial plane with 2D CT images and at the same level of three different transverse planes using a 3D reconstructed image. Results: The mean difference between the scapular body axis on the 3D reconstructed image and the 2D CT slice axis was 38.4°. At the level of the midpoint of the glenoid, the measurements were 1.7°±4.9° on the 2D CT images and -1.8°±4.1° in the 3D reconstructed image. At the level of the center of the lower circle, the measurements were 2.7°±5.2° on the 2D CT images and -0.5°±4.8° in the 3D reconstructed image. A statistically significant difference was found between the 2D CT and 3D reconstructed images at all three levels. Conclusions: The glenoid version is measured differently between axial 2D CT and 3D reconstructed images at three levels. Use of 3D reconstructed imaging can provide a more accurate glenoid version profile relative to 2D CT. The glenoid version is measured differently at different levels.

Efficacy of Forward Head Posture on Scapular Kinematic Changes and Shoulder Pain

  • Eunsang Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.436-445
    • /
    • 2022
  • Objective: Deformation of soft tissues around the neck and scapularcan caused by forward head posture(FHP), which has an uncomfortable effect on biomechanical changes in the scapula as well as functional disorders of the shoulder. However, studies related to direct FHP, biomechanical changes in the scapulafunction, and shoulder pain and disorder have not yet been conducted. Therefore, purpose of this study is to effect of decresedthe FHP on the shoulder function of the sacpular biomechanical examine the change in the shoulder painand disorder. Design: A randomized controlled trial Methods: The participants were 32adults(23.03±3.90 years) recruited and redivided randomly into Forward head posture corrective exercise(FHPCE) vs Control. The FHPCE group was proceeded according to the over load principle through 2steps biofeedback exercise and corrective exercise(n=16). The control (n=16) was TENS did not operated and padding 20 minute. This study was conducted 3 times a week for 4a weeks. Results: FHPCE group is improve in the results of craneocervical angle(p<0.05, 95% CI: 0.352, 4.073). In Mechanical changes of scapula in the shoulder flexion more significant improvement in FHPCE than control group[Axis X(p<0.05), Y(p<0.01), Z(p<0.01)], and shoulder abductionmore significant improvement in FHPCE than control group[xis X(p<0.01)], as well FHPCE showed significant increased in the results in the shoulder pain(p<0.05, 95% CI: -13.244, -1.566) Conclusions: This study suggected that FHP affects the biomechanical changes of the shoulder, and a new method for shoulder pain intervention

Relationship of Intraoperative Anatomical Landmarks, the Scapular Plane and the Perpendicular Plane with Glenoid for Central Guide Insertion during Shoulder Arthroplasty

  • Kim, Jung-Han;Min, Young-Kyoung
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • Background: This study was undertaken to evaluate the positional relationship between planes of the glenoid component (the scapular plane and the perpendicular plane to the glenoid) and its surrounding structures. Methods: Computed tomography (CT) images of both shoulders of 100 patients were evaluated using the 3-dimensional CT reconstruction program ($Aquarius^{(R)}$; TeraRecon). We determined the most lateral scapular bony structure of the scapular plane and measured the shortest distance between the anterolateral corner of the acromion and the scapular plane. The distance between the scapular plane and the midpoint of the line connecting the posterolateral corner of acromion and the anterior tip of the coracoid process (fulcrum axis) was also evaluated. The perpendicular plane was then adjusted to the glenoid and the same values were re-assessed. Results: The acromion was the most lateral scapular structure of scapular plane and perpendicular plane to the glenoid. The average distance from the anterolateral corner of the acromion to the scapular plane was $10.44{\pm}5.11mm$, and to the plane perpendicular to the glenoid was $9.55{\pm}5.13mm$. The midpoint of fulcrum axis was positioned towards the acromion and was measured at $3.90{\pm}3.21mm$ from the scapular plane and at $3.84{\pm}3.17mm$ from the perpendicular plane to the glenoid. Conclusions: Our data indicates that the relationship between the perpendicular plane to the glenoid plane and its surrounding structures is reliable and can be used as guidelines during glenoid component insertion (level of evidence: Level IV, case series, treatment study).