• Title/Summary/Keyword: SHM (structural health monitoring)

Search Result 314, Processing Time 0.024 seconds

Experimental validation of Kalman filter-based strain estimation in structures subjected to non-zero mean input

  • Palanisamy, Rajendra P.;Cho, Soojin;Kim, Hyunjun;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.489-503
    • /
    • 2015
  • Response estimation at unmeasured locations using the limited number of measurements is an attractive topic in the field of structural health monitoring (SHM). Because of increasing complexity and size of civil engineering structures, measuring all structural responses from the entire body is intractable for the SHM purpose; the response estimation can be an effective and practical alternative. This paper investigates a response estimation technique based on the Kalman state estimator to combine multi-sensor data under non-zero mean input excitations. The Kalman state estimator, constructed based on the finite element (FE) model of a structure, can efficiently fuse different types of data of acceleration, strain, and tilt responses, minimizing the intrinsic measurement noise. This study focuses on the effects of (a) FE model error and (b) combinations of multi-sensor data on the estimation accuracy in the case of non-zero mean input excitations. The FE model error is purposefully introduced for more realistic performance evaluation of the response estimation using the Kalman state estimator. In addition, four types of measurement combinations are explored in the response estimation: strain only, acceleration only, acceleration and strain, and acceleration and tilt. The performance of the response estimation approach is verified by numerical and experimental tests on a simply-supported beam, showing that it can successfully estimate strain responses at unmeasured locations with the highest performance in the combination of acceleration and tilt.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

장기 모니터링 환경에서 센서 패키징 방법에 따른 광섬유 센서의 신호 안정성 평가 (Evaluation of Signal Stability of Fiber Optic Sensors with respect to Sensor Packaging Methods in Long-Term Monitoring)

  • 강동훈;김헌영;김대현
    • 비파괴검사학회지
    • /
    • 제36권4호
    • /
    • pp.281-287
    • /
    • 2016
  • 다중화와 절대측정이 가능한 광섬유 브래그 격자(FBG) 센서는 다양한 분야의 건전성 모니터링에 활용되고 있으며, 패키징을 통한 빠른 상용화가 진행 중이다. 하지만, 장시간 구조 건전성 모니터링시 FBG 센서는 반복 열하중에 노출되며 이는 센서의 신호 안정성에 영향을 줄 수 있어 면밀한 검토가 필요하다. 본 연구에서는 일반적으로 사용되는 FBG 센서의 브래그 격자 부분에 대한 두 가지 패키징 방법(양단 접착, 직접 접착)에 대해 반복 열하중이 신호 안정성에 미치는 영향을 고찰하였다. 구체적으로, $-20^{\circ}C{\sim}60^{\circ}C$의 온도 조건에서 300사이클 동안 FBG 센서의 브래그 파장, 광 강도값, 반너비값 등의 신호 특성을 관찰하였으며 직접 접착에 대해 수행한 선행 연구와의 비교를 통해 두 가지 패키징 방법에 대한 신호 안정성을 평가하였다. 시험 결과, 장기간 반복 열하중이 가해지는 환경에 노출된 FBG 센서의 경우 양단 접착이 직접 접착보다 신호 안정성이 더 높기 때문에 FBG 센서의 패키징시 양단 접착 방식이 더 효과적임을 확인하였다.

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

광섬유 브래그 격자 센서를 이용한 에폭시 수지의 경화도 모니터링 (Cure Monitoring of Epoxy Resin by Using Fiber Bragg Grating Sensor)

  • 이진혁;김대현
    • 비파괴검사학회지
    • /
    • 제36권3호
    • /
    • pp.211-216
    • /
    • 2016
  • 에폭시 수지는 여러 산업분야에서 다양한 구조물의 접합과 제조에 사용된다. 구조물의 안전성과 접합재료의 최적 성능 확보를 위해서는 에폭시 수지의 경화 과정 모니터링 기반의 공정 제어가 요구된다. 광섬유 센서는 실과 같은 형태적 특징으로 인해 에폭시 수지의 경화 모니터링에 적합한 센서이다. 본 연구에서는 광섬유 브래그 격자 센서(fiber Bragg grating, FBG)를 이용하여 에폭시 수지의 경화 모니터링 연구를 수행하였다. 실제 실험을 통해, FBG를 기반으로 에폭시 수지의 경화과정에서 에폭시의 부피 수축에 의해 센서에 가해지는 변형률을 측정하고 온도의 변화에 의한 신호 변화를 보정하여 경화과정에서 발생하는 변형률의 정확한 모니터링이 가능함을 확인하였다. 추가적으로, 두 가지 에폭시 수지의 경화도 과정을 비교 분석하여 에폭시 종류에 따른 경화과정의 차이를 확인하였다. 결론적으로 FBG 센서가 에폭시 수지의 경화도 모니터링에 유용하다는 점을 확인하였다.

Damage detection for pipeline structures using optic-based active sensing

  • Lee, Hyeonseok;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제9권5호
    • /
    • pp.461-472
    • /
    • 2012
  • This study proposes an optics-based active sensing system for continuous monitoring of underground pipelines in nuclear power plants (NPPs). The proposed system generates and measures guided waves using a single laser source and optical cables. First, a tunable laser is used as a common power source for guided wave generation and sensing. This source laser beam is transmitted through an optical fiber, and the fiber is split into two. One of them is used to actuate macro fiber composite (MFC) transducers for guided wave generation, and the other optical fiber is used with fiber Bragg grating (FBG) sensors to measure guided wave responses. The MFC transducers placed along a circumferential direction of a pipe at one end generate longitudinal and flexural modes, and the corresponding responses are measured using FBG sensors instrumented in the same configuration at the other end. The generated guided waves interact with a defect, and this interaction causes changes in response signals. Then, a damage-sensitive feature is extracted from the response signals using the axi-symmetry nature of the measured pitch-catch signals. The feasibility of the proposed system has been examined through a laboratory experiment.

Impacts of label quality on performance of steel fatigue crack recognition using deep learning-based image segmentation

  • Hsu, Shun-Hsiang;Chang, Ting-Wei;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.207-220
    • /
    • 2022
  • Structural health monitoring (SHM) plays a vital role in the maintenance and operation of constructions. In recent years, autonomous inspection has received considerable attention because conventional monitoring methods are inefficient and expensive to some extent. To develop autonomous inspection, a potential approach of crack identification is needed to locate defects. Therefore, this study exploits two deep learning-based segmentation models, DeepLabv3+ and Mask R-CNN, for crack segmentation because these two segmentation models can outperform other similar models on public datasets. Additionally, impacts of label quality on model performance are explored to obtain an empirical guideline on the preparation of image datasets. The influence of image cropping and label refining are also investigated, and different strategies are applied to the dataset, resulting in six alternated datasets. By conducting experiments with these datasets, the highest mean Intersection-over-Union (mIoU), 75%, is achieved by Mask R-CNN. The rise in the percentage of annotations by image cropping improves model performance while the label refining has opposite effects on the two models. As the label refining results in fewer error annotations of cracks, this modification enhances the performance of DeepLabv3+. Instead, the performance of Mask R-CNN decreases because fragmented annotations may mistake an instance as multiple instances. To sum up, both DeepLabv3+ and Mask R-CNN are capable of crack identification, and an empirical guideline on the data preparation is presented to strengthen identification successfulness via image cropping and label refining.

광섬유 브래그 격자 센서를 이용한 근육 상태 감시 시스템 (Muscular Condition Monitoring System Using Fiber Bragg Grating Sensors)

  • 김헌영;이진혁;김대현
    • 비파괴검사학회지
    • /
    • 제34권5호
    • /
    • pp.362-368
    • /
    • 2014
  • 광섬유센서는 전자파 무간섭, 부식 방지, 다중화 등의 장점들을 갖고 있어 다양한 상태 감시 시스템을 위한 연구에 많이 활용되고 있다. 본 논문에서는 광섬유센서 기반의 인체 근육 상태 감시 시스템을 제안한다. 상용화되어 있는 인체 상태 감시 센서는 전자기 기반의 센서가 대부분이다. 이는 전자기 간섭 및 왜곡의 우려가 있어, 이를 보완하고 장치의 간소화 및 사용자 편의성을 위해 광섬유 브래그 격자센서를 사용하였다. 근육 상태의 지표가 되는 근육 수축 및 이완을 측정하기 위해 원주방향으로의 운동 감시가 가능한 밴드형태의 광섬유 브래그 격자센서 모듈을 제작하였다. 그리고 광섬유 브래그 격자센서 모듈의 적용성 평가를 위해 단축 인장시험을 수행하였다. 실험 결과 인장 크기에 따른 브래그 파장 변화가 상호 연관성을 보였으며, 이를 통해 브래그 격자센서 기반의 근육 상태 감시 시스템 개발의 가능성을 확인하였다.

니켈이 코팅된 FBG 센서의 잔류 변형률 특성 (Residual Strain Characteristics of Nickel-coated FBG Sensors)

  • 조원재;황아름;김상우
    • 대한기계학회논문집A
    • /
    • 제41권7호
    • /
    • pp.613-620
    • /
    • 2017
  • 금속이 코팅된 FBG(fiber Bragg grating) 센서는 구조물이 과거에 겪은 최대 변형률을 기억하는 기억효과(memory effect)를 가진다. 본 연구에서는 무전해 도금법과 전해 도금법을 이용하여 약 $43{\mu}m$의 두께를 가지는 니켈(nickel)이 코팅된 FBG 센서를 제작하였다. 니켈 코팅된 FBG 센서의 잔류 변형률 생성 성능, 즉, 기억효과를 검증하기 위해 반복하중 실험(잔류 변형률 생성실험)을 수행하였다. 인가한 최대 변형률의 크기가 증가함에 따라 잔류 변형률이 증가함을 확인함으로써 기억효과를 검증하였다. 본 연구에서 수행한 니켈이 코팅된 FBG 센서의 제작 기법과 센서에 대한 반복하중 실험결과는 향후 광섬유 센서를 이용한 구조물 건전성 감시(SHM, structural health monitoring)기법 개발에 기본 데이터로서 활용될 것이다.

Analysis of Time Domain Active Sensing Data from CX-100 Wind Turbine Blade Fatigue Tests for Damage Assessment

  • Choi, Mijin;Jung, Hwee Kwon;Taylor, Stuart G.;Farinholt, Kevin M.;Lee, Jung-Ryul;Park, Gyuhae
    • 비파괴검사학회지
    • /
    • 제36권2호
    • /
    • pp.93-101
    • /
    • 2016
  • This paper presents the results obtained using time-series-based methods for structural damage assessment. The methods are applied to a wind turbine blade structure subjected to fatigue loads. A 9 m CX-100 (carbon experimental 100 kW) blade is harmonically excited at its first natural frequency to introduce a failure mode. Consequently, a through-thickness fatigue crack is visually identified at 8.5 million cycles. The time domain data from the piezoelectric active-sensing techniques are measured during the fatigue loadings and used to detect incipient damage. The damage-sensitive features, such as the first four moments and a normality indicator, are extracted from the time domain data. Time series autoregressive models with exogenous inputs are also implemented. These features could efficiently detect a fatigue crack and are less sensitive to operational variations than the other methods.