• Title/Summary/Keyword: SHEPWM

Search Result 14, Processing Time 0.022 seconds

Study on Hybrid PWM Method under Low Switching Frequency

  • Kekang, Wei;Zheng, Trillion Q.;Wang, Ran;Wang, Chenchen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.64-69
    • /
    • 2012
  • This paper presents a hybrid pulse width modulation (PWM) method under low switching frequency conditions based on space vector PWM (SVPWM) and selective harmonic eliminated PWM (SHEPWM), which use asynchronous carrier modulation SVPWM at low frequency, and SHEPWM at high frequency, a square wave after rated conditions. A transitive strategy is proposed to realize a smooth transition of individual modes including SVPWM, SHEPWM and square waves. Experimental results confirm this hybrid modulation method and their transition are reasonable and proper.

Hybrid PWM Modulation Technology Applied to Three-Level Topology-Based PMSMs

  • Chen, Yuanxi;Guo, Xinhua;Xue, Jiangyu;Chen, Yifeng
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.146-157
    • /
    • 2019
  • The inverter is an essential part of permanent magnet synchronous motor (PMSM) drive systems. The performance of an inverter is greatly influenced by its modulation strategy. Using a proper management of modulation strategies can guarantee high performance from a PMSM under various speed conditions. Switching between modulations is a pivotal technique that determines the performance of a PMSM. Most works on hybrid methods focus on two-level induction motors drive systems. In this paper, in order to improve the performance of PMSMs under various speed conditions, a hybrid method of a pulse width modulation (PWM) control scheme based on a neutral-point-clamped (NPC) three level topology was proposed. This hybrid PWM modulation comprised space vector PWM (SVPWM) and selective harmonic elimination PWM (SHEPWM). Under low speed conditions, the SVPWM is employed to cause the PMSM to start smoothly, and to obtain a rapid response from the control system. Under high speed conditions, the SHEPWM is employed to reduce the switching frequency and to eliminate particular current harmonics. Moreover, the harmonic characteristics of different modulations are analyzed to obtain a smooth transition between the SHEPWM and the SVPWM. Experimental and simulation results indicated the effectiveness of the proposed control method.

The Estimation on Switching Technique via Output Power Source Analysis of Power Conversion System in an Electric Railway Vehicle (철도차량내의 전력변환장치 출력전원 분석을 통한 스위칭 기법 추정)

  • Kim, Jae-Moon;Lee, Eul-Jae;Yun, Cha-Jung;Kim, Yang-Su
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.185-190
    • /
    • 2010
  • This paper presents the estimation on switching technique via output power source analysis of power conversion unit in electric railway vehicle. The focus of this study suggested an alternative on critical problems by using head electric power(HEP). To achieve this, we have measured output power of HEP, and measurement devices set up at output of transformer connected HEP to analysis quality on output power source of head electric power(HEP) unit in electric railway vehicle. Using results of measurement of it, parameters are assumed for simulation to confirm estimation on switching technique. It is confirmed that switching technique is Selected Harmonic Elimination PWM(SHEPWM) and inverter switching frequency is less than 500[Hz]. Throughout experiment and simulation, it is estimated that switching technique used HEP is advanced SHEPWM and switching frequency is about 300[Hz]. Also leakage inductance in transformer is about $180[{\mu}H]$ less than $365[{\mu}H]$ known.

Application of Bacterial Foraging Algorithm and Genetic Algorithm for Selective Voltage Harmonic Elimination in PWM Inverter

  • Maheswaran, D.;Rajasekar, N.;Priya, K.;Ashok kumar, L.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.944-951
    • /
    • 2015
  • Pulse Width Modulation (PWM) techniques are increasingly employed for PWM inverter fed induction motor drive. Among various popular PWM methods used, Selective Harmonic Elimination PWM (SHEPWM) has been widely accepted for its better harmonic elimination capability. In addition, using SHEPWM, it is also possible to maintain better voltage regulation. Hence, in this paper, an attempt has been made to apply Bacterial Foraging Algorithm (BFA) for solving selective harmonic elimination problem. The problem of voltage harmonic elimination together with output voltage regulation is drafted as an optimization task and the solution is sought through proposed method. For performance comparison of BFA, the results obtained are compared with other techniques such as derivative based Newton-Raphson method, and Genetic Algorithm. From the comparison, it can be observed that BFA based approach yields better results. Further, it provides superior convergence, reduced computational burden, and guaranteed global optima. The simulation results are validated through experimental findings.

Elimination of Low Order Harmonics in Multilevel Inverters Using Genetic Algorithm

  • Salehi, Reza;Farokhnia, Naeem;Abedi, Mehrdad;Fathi, Seyed Hamid
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • The selective harmonic elimination pulse width modulation (SHEPWM) switching strategy has been applied to multilevel inverters to remove low harmonics. Naturally, the related equations do not have feasible solutions for some operating points associated with the modulation index (M). However, with these infeasible points, minimizing instead of eliminating harmonics is performed. Thus, harmful harmonics such as the $5^{th}$ harmonic still remains in the output waveform. Therefore, it is proposed in this paper to ignore solving the equation associated with the highest order harmonics. A reduction in the eliminated harmonics results in an increase in the degrees of freedom. As a result, the lower order harmonics are eliminated in more operating points. A 9-level inverter is chosen as a case study. The genetic algorithm (GA) for optimization purposes is used. Simulation results verify the proposed method.

Natural Balancing of the Neutral Point Potential of a Three-Level Inverter with Improved Firefly Algorithm

  • Gnanasundari, M.;Rajaram, M.;Balaraman, Sujatha
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1306-1315
    • /
    • 2016
  • Modern power systems driven by high-power converters have become inevitable in view of the ever increasing demand for electric power. The total power loss can be reduced by limiting the switching losses in such power converters; increased power efficiency can thus be achieved. A reduced switching frequency that is less than a few hundreds of hertz is applied to power converters that produce output waveforms with high distortion. Selective harmonic elimination pulse width modulation (SHEPWM) is an optimized low switching frequency pulse width modulation method that is based on offline estimation. This method can pre-program the harmonic profile of the output waveform over a range of modulation indices to eliminate low-order harmonics. In this paper, a SHEPWM scheme for three-phase three-leg neutral point clamped inverter is proposed. Aside from eliminating the selected harmonics, the DC capacitor voltages at the DC bus are also balanced because of the symmetrical pulse pattern over a quarter cycle of the period. The technique utilized in the estimation of switching angles involves the firefly algorithm (FA). Compared with other techniques, FA is more robust and entails less computation time. Simulation in the MATLAB/SIMULINK environment and experimental verification in the very large scale integration platform with Spartan 6A DSP are performed to prove the validity of the proposed technique.

The Study on the HBML Inverter Using the Cascaded Transformers (변압기 직렬구성을 이용한 HBML 인버터에 관한 연구)

  • 박성준;박노식;강필순;김광헌;임영철;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.334-340
    • /
    • 2004
  • In this paper, an efficient switching pattern to equalize the size of transformer is proposed for a multi-level inverter employing cascaded transformers. It is based on the prior selected harmonic elimination PWM(SHEPWM) method. Because the maximum magnetic flux imposed on each transformer becomes exactly equal each to each, all transformers can be designed with the same size regardless of their position. Therefore, identical full-bridge inverter units can be utilized, thus improving modularity and manufacturability. The fundamental idea of the proposed switching pattern is illustrated and then analyzed theoretically. The validity of the proposed switching strategy is verified by experimental results.

A Study on Power Quality Improvement of Power Conversion System in Centralized-Power Type Electric Railway Vehicle (동력 집중식 철도차량의 전력변환장치 전력품질 향상연구)

  • Kim, Jae-Moon;Yun, Cha-Jung;Lee, Eul-Jae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.559-564
    • /
    • 2010
  • This paper proposes an advanced filter design to improve power quality of a head electric power (HEP) as a power conversion unit in centralized-power type electric railway vehicle. First of all, we have measured waveform of output power of transformer connected HEP to design the filter. Throughout experiment and simulation results, it is estimated that switching technique used HEP is advanced selected harmonic elimination PWM (SHEPWM) and the applied switching frequency is about 300Hz. In this paper, a filter to improve power quality considering estimated parameters is designed. As a result, the reduction of the magnitude of the overall harmonic is achieved and confirmed through simulations.

Real time Implementation of SHE PWM in Single Phase Matrix Converter using Linearization Method

  • Karuvelam, P. Subha;Rajaram, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1682-1691
    • /
    • 2015
  • In this paper, a real time implementation of selective harmonic elimination pulse width modulation (SHEPWM) using Real Coded Genetic Algorithm (RGA), Particle Swarm Optimization technique (PSO) and a new technique known as Linearization Method (LM) for Single Phase Matrix Converter (SPMC) is designed and discussed. In the proposed technique, the switching frequency is fixed and the optimum switching angles are obtained using simple mathematical calculations. A MATLAB simulation was carried out, and FFT analysis of the simulated output voltage waveform confirms the effectiveness of the proposed method. An experimental setup was also developed, and the switching angles and firing pulses are generated using Field Programmable Gate Array (FPGA) processor. The proposed method proves that it is much applicable in the industrial applications by virtue of its suitability in real time applications.

Switching signal of Cascaded HBML inverter employing the identical Transformer (동일한 변압기 용량을 갖는 직렬형 HBML 인버터의 스위칭 신호)

  • Lee, S.H.;Park, S.J.;Moon, C.J.;Ahn, J.W.;Gwon, S.J.;Lee, M.H.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.651-654
    • /
    • 2005
  • In this paper, an efficient switching pattern to equalize the size of transformer is proposed for a multi-level inverter employing cascaded transformers. It is based on the prior selected harmonic elimination PWM(SHEPWM) method. Because the maximum magnetic flux imposed on each transformer becomes exactly equal each to each, all transformers can be designed with the same size regardless of their position. Therefore, identical full-bridge inverter units can be utilized, thus improving modularity and manufacturability. The fundamental idea of the proposed switching pattern is illustrated and the analyzed theoretically. The validity of the proposed switching strategy is verified by experimental results.

  • PDF