• Title/Summary/Keyword: SHEAR STRENGTH

Search Result 5,534, Processing Time 0.036 seconds

Shear strength formula of CFST column-beam pinned connections

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.409-421
    • /
    • 2012
  • Recently, as the height of building is getting higher, the applications of CFST column for high-rise buildings have been increased. In structural system of high-rise building, The RC core and exterior concrete-filled tubular (CFST) column-beam pinned connection is one of the structural systems that support lateral load. If this structural system is used, due to the minimal CFST column thickness compared to that of the CFST column width, the local moment occurred by the eccentric distance between the column flange surface from shear bolts joints degrades the shear strength of the CFST column-beam pinned connections. This study performed a finite element analysis to investigate the shear strength under eccentric moment of the CFST column-beam pinned connections. The column's width and thickness were used as variables for the analysis. To guarantee the reliability of the finite element analysis, an actual-size specimens were fabricated and tested. The yield line theory was used to formulate an shear strength formula for the CFT column-beam pinned connection. the shear strength formula was suggested through comparison on the results of FEM analysis, test and yield lime theory, the shear strength formula was suggested.

A new statistical approach for joint shear strength determination of RC beam-column connections subjected to lateral earthquake loading

  • Kim, Jaehong;LaFavet, James M.;Song, Junho
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.439-456
    • /
    • 2007
  • Reinforced concrete (RC) joint shear strength models are constructed using an experimental database in conjunction with a Bayesian parameter estimation method. The experimental database consists of RC beam-column connection test subassemblies that maintained proper confinement within the joint panel. All included test subassemblies were subjected to quasi-static cyclic lateral loading and eventually experienced joint shear failure (either in conjunction with or without yielding of beam reinforcement); subassemblies with out-of-plane members and/or eccentricity between the beam(s) and the column are not included in this study. Three types of joint shear strength models are developed. The first model considers all possible influence parameters on joint shear strength. The second model contains those parameters left after a step-wise process that systematically identifies and removes the least important parameters affecting RC joint shear strength. The third model simplifies the second model for convenient application in practical design. All three models are unbiased and show similar levels of scatter. Finally, the improved performance of the simplified model for design is identified by comparison with the current ACI 352R-02 RC joint shear strength model.

U-shaped reinforcement for bond splitting prevention in RC beams (고강도 전단 보강근과 비폐쇄형 보강근의 혼용에 의한 RC보의 보강 효과)

  • Kwak, Sung-Guen;Lee, Hyun-A;Yoon, Hye-Sun;Kim, Kil-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.201-204
    • /
    • 2006
  • The shear resistance of RC beams is subject to the amount of shear-reinforcing bars ($p_w$) and yield strength ($f_{wy}$) as well as their interactive influence ($p_wf_{wy}$). Thus, it is reasonably expected that high-strength steel bars can greatly reduce the necessary amount of shear-reinforcing bars. On the other hand, although the bond strength is influenced by the amount of shear reinforcing bars, it is not affected by the yield strength. Thus, there is often an issue that bond failure occurs before shear failure depending on the arrangement of shear reinforcing bars. It is a common practice to set sub-ties for the transverse confinement of the main re-bars as a method to prevent the bond failure. However, it can also become a factor in decreased work efficiency due to the complexity of the construction. This study experimented with simultaneous use of high-strength transverse reinforcing bars ($f_{wy}=800MPa$) and U-shaped transverse reinforcing bars of regular strength ($f_{wy}=300MPa$) in an attempt to decrease the necessary quantity of shear reinforcing bars. The effect of this attempt was investigated through fundamental experimental research in terms of the improvement in shear resistance and bond strength as well as the ease of construction.

  • PDF

The Characteristics of Shear Strength on Weathered Residual Soils for the Effect of Soaking and Disturbance (수침 및 교란 효과에 따른 풍화잔적토의 전단강도 특성)

  • 오세붕;정종혁;이영휘
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.125-139
    • /
    • 1999
  • It is difficult to evaluate the shear strength of weathered residual soils because of the difficulties of undisturbed sampling. In this study, a sampling device, direct shear box with shoe, was developed in order to get undisturbed samples easily for direct shear tests, and undisturbed samples could be successfully obtained. Through direct shear tests on undisturbed samples, the shear strength was evaluated with the variation of saturated conditions. In order to consider the effect of disturbance on the shear strength, a static compaction device was developed, and then it was found that undisturbed samples show greater shear strengths than the disturbed ones under natural water contents and similar strengths to the ones under soaked conditions. Further, the shear strength evaluated from direct shear tests was compared with the result of triaxial tests on undisturbed samples, and soaked strengths of the former were similar to the latter. As the result of stability analyses on an actual failed slope, it was found that the shear strength can be evaluated reasonably using direct shear box with shoe.

  • PDF

Comparison of Shear Strength Characteristics of Unsaturated Soil From Triaxial Compression Tests with Direct Shear Tests (삼축시험과 직접전단시험에 의한 불포화토의 전단특성 비교)

  • Hwang, Hui-Seok;Choi, Young-Nam;Park, Byung-Soo;Yoo, Nam-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.63-69
    • /
    • 2016
  • In this paper, shear strength characteristics of an unsaturated soil were compared using triaxial compression tests(CD) and modified direct shear tests and thus feasibility of the newly modified direct shear testing apparatus was confirmed. The shear strength tests of unsaturated state with a soil sample, obtained from a slope where debris flow occurred at Yangpyeong in Kyeunggi province during 2010, were performed. Both tests showed a linear relationship of matric suction with the shear strength under low level of matric suction. The apparent cohesion of the unsaturated soil was also increased linearly with increase of matric suction. As results of comparing two different testing apparatus, estimated values of shear strength parameters of unsaturated soil($c^{\prime}$, ${\phi}^b$) were slightly larger in the modified direct shear tests due to constraint effect of shear box.

Interface Shear Strength in Half Precast Concrete Slab (반두께 P.C. 슬래브의 면내전단내력에 관한 연구)

  • 이광수;김대근;최종수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.161-168
    • /
    • 1994
  • Half-P.C. slab system is the composite structural system which utilizes precast concrete for lower portion and cast in situ concrete for upper portion slab. When the composite slab using Half P.C. slab is deformed by flexural moment, horizontal shear happened at the interface between Half P.C. slab and topping concrete. To resist horizontal shear strength a scratch method has tried. To determine ultimate interface shear strength, shear stress, and shear coefficient, high and normal strength concrete are used for topping concrete. Major variables are compressive strength of topping concrete with or without shear reinforcement, quantitative roughness of the P.C. :surface and tie or untie of the stud with welded deformed wire fabric in the P.C. member. The Icross sectional area on joints is 3,200 $cm^2$ in all specimens. Test results showed that shear stress increased, as the depth of the quantitative roughness increased. The horizontal shear strength could be resisted with safe by the quantitative roughness without shear tie. A shear coefficient determinant equation is proposed such that K = 0.025918 + 0.0068894$\cdot$R – 0.000182354${\cdot}R^2$

Simplified method for prediction of elastic-plastic buckling strength of web-post panels in castellated steel beams

  • Liu, Mei;Guo, Kangrui;Wang, Peijun;Lou, Chao;Zhang, Yue
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.671-684
    • /
    • 2017
  • Elastic-plastic shear buckling behaviors of the web-post in a Castellated Steel Beam (CSB) with hexagonal web openings under vertical shear force were investigated further using Finite Element Model (FEM) based on a sub-model, which took the upper part of the web-post under horizontal shear force to represent the whole web-post under vertical shear force. A simplified design method for the web-post elastic-plastic shear buckling strength was proposed based on simulation results of the sub-model. Proper boundary conditions were applied to the sub-model to assure that its behaviors were identical to those of the whole web-post. The equation to calculate the thin plate elastic shear buckling strength was adopted as the basic form to build the design equation for elastic-plastic buckling strength of the sub-model. Parameters that might affect the elastic-plastic shear buckling strength of the whole web-post were studied. After obtaining the vertical shear buckling strength of a sub-model through FEM, the shear buckling coefficient k can be obtained through the back analysis. A practical calculation method for k was proposed through curving fitting the parameter study results. The elastic-plastic shear buckling strength of the web-post calculated using the proposed shear buckling coefficient k agreed well with that obtained from the FEM and test results. And it was more precise than those obtained from EC3 based on the strut model.

Shear Behavior of High-Strength Concrete Deep Beams and Comparisons with ACI Shear Design Provisions (고강도 철근콘크리트 깊은 보의 전단거동 및 ACI 전단설계 기준과의 비교)

  • 정헌수;양근혁;함영삼
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.874-882
    • /
    • 2002
  • Currently, deep beams are designed according to ACT 318-99 equations derived from experimental data for slender beams with normal-strength concrete. In addition, there is relatively limited information on high-strength concrete deep beams with shear reinforcement. The purpose of this experimental study is to investigate the shear behavior of high-strength concrete deep beams and to grasp the conservatism of ACI shear design provisions. Experimental results on the shear behavior of 22 deep beams under two equal symmetrically placed point loads are reported. compressive strength of concrete cylinder was 800kgf/$\textrm{cm}^2$, and main variables were vertical and horizontal shear reinforcement and shear span-to-overall depth ratio (а/h). Test results showed that for high-strength concrete deep beams with shear span-to-overall depth ratio exceeding 0.75, the vertical shear reinforcement more effectively resisted the shear load than horizontal shear reinforcement. In high-strength concrete deep beams, ACI shear design provisions tended to underestimate the effect of strut-tie action and vertical shear reinforcement and overestimate the ones of horizontal shear reinforcement. Based on the experimental results of high-strength concrete deep beams and shear friction theory, this study modified the equations on the shear capacity specified by the ACI provisions.

A Study on the Interface Shear Strength of HDPE Textured Geomembrane (HDPE 표면처리 지오멤브레인의 경계면 전단강도에 관한 연구)

  • Kim, Sejin;Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.41-49
    • /
    • 2016
  • This paper evaluates the interface shear strength of HDPE textured geomembrane. The interface shear strength between textured geomembrane and marl, and textured geomembrane and woven geotextile were measured; and the smooth geomembrane was used to evaluate the effect of "texture" on the interface shear strength. The interface shear strength was measured using a large direct shear testing device under several conditions including the presence of water, and the normal stresses that were 12, 24, 45, 100, 500, and 1,000 kPa. From testing results, it was found that there was meaningful reduction in the interface shear strength in the presence of water, but the effect of normal stress was not clear. The interface shear strength was measured to be significantly different for smooth geomembrane, whose strength was measured to be as small as half that of the textured geomembrane.

STUDIES ON THE BOND BETWEEN COMPOSITE RESIN AND DENTIN TREATED BY DENTIN BONDING AGENTS (상아질 표면 처리에 의한 상아질과 복합레진의 결합에 관한 연구)

  • Youn, Dong-Ho;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.36-54
    • /
    • 1992
  • The purpose of this study was to compare the shear bond strengths to ground dentin surfaces of four dentinal bonding agents in 193 teeth. Various dentin surfaces treated with four dentin bonding agents were attached with two restorative composite resins. The effectiveness of the bonding were tested by the monitoring the shear bond strength. The shear bond strengths were measured after 2 hours and 24 hours after surface conditioning with four dentin bonding agents. Effects of EDTA, the additive illumination, and sealer treatments without primer on bond strength to dentin surfaces were assessed. In addition the effects of the thickness of specimens ranging from 0.65 mm to 1.95 mm and the ratio of catalyst and base paste on the bond strength of chemical cure composite resin were estimated. The shear bond strength was determined by testing specimens in the Instron universal testing machine (Model No. 1122) at a crosshead speed of 1.0 mm/min. Following condusions were drawn: 1. The highest mean shear bond strengths of chemical cure composite resin to dentin conditioning with dentin bonding agents aged 2 hours were obtained, and then that was decreased with time followed by EDTA treatment. 2. In light cure composite resin, the shear bond strength was increased following dentin conditioning with bonding agents with time, irradiation time and EDTA treatment except in SB group. 3. The thicker the composite resin specimen was, the less the shear bond strength in chemical cure composite resin was. 4. In light cure composite resin, there was a little change in shear bond strength following dentin conditioning with bonding agents. 5. In chemical cure composite resin, the shear bond strength was the highest in the ratio of 1/1 of catalyst and base part. 6. Without a dentin primer, shear bond strength to dentin conditioned only with UB sealer was the highest among four sealers in light cure composite resin.

  • PDF