• Title/Summary/Keyword: SHAPE

Search Result 32,832, Processing Time 0.052 seconds

Active Shape Model with Directional Profile (방향성 프로파일을 적용한 능동형태 모델)

  • Kim, Jeong Yeop
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1720-1728
    • /
    • 2017
  • Active shape model is widely used in the field of image processing especially on arbitrary meaningful shape extraction from single gray level image. Cootes et. al. showed efficient detection of variable shape from image by using covariance and mean shape from learning. There are two stages of learning and testing. Hahn applied enhanced shape alignment method rather than using Cootes's rotation and scale scheme. Hahn did not modified the profile itself. In this paper, the method using directional one dimensional profile is proposed to enhance Cootes's one dimensional profile and the shape alignment algorithm of Hahn is combined. The performance of the proposed method was superior to Cootes's and Hahn's. Average landmark estimation error for each image was 27.72 pixels and 39.46 for Cootes's and 33.73 for Hahn's each.

A Study on the Fine Structure of the Marine Diatoms of Korean Coastal Waters - Genus Thalassiosira 3

  • Lee, Jin-Hwan;Park, Joon-Sang
    • ALGAE
    • /
    • v.23 no.3
    • /
    • pp.187-199
    • /
    • 2008
  • A study on the fine structure of the marine diatom Thalassiosira has been carried out during the periods from January 2007 to March 2008 in Korean coastal waters. As the third series of the Thalassiosira species, a fine structure, description, distribution and taxonomic remarks of the six Thalassiosira species were observed by means of light microscope and scanning electron microscope. The critical features of Thalassiosira species were a shape of external tubes of marginal strutted processes and labiate process. Six species showed each different shape of external tubes, marginal strutted processes and labiate process. The shape of external tube was divided into five types: T shape of Thalassiosira curviseriata, small-rounded shape of T. lundiana, double-layer form and flame shape of T. nordenskioeldii, tulip shape of T. punctigera and tooth-shape of T. tenera. This external character may be able to key character for positive identification of the Thalassiosira species. Of these Thalassiosira lundiana, T. minuscula and T. tenera were new records for Korean coastal waters.

Shape Adaptive Searching Region to Find Focused Image Points in 3D Shape Reconstruction (3차원 형체복원에 있어서 측정면에 적응적인 초점화소 탐색영역 결정기법)

  • 김현태;한문용;홍민철;차형태;한헌수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.77-77
    • /
    • 2000
  • The shape of small or curved object is usually reconstructed using a single camera by moving its lens position to find a sequence of the focused images. Most conventional methods have used a window with fixed shape to test the focus measure, which resulted in a deterioration of accuracy. To solve this problem, this paper proposes a new approach of using a shape adaptive window. It estimates the shape of the object at every step and applies the same shape of window to calculate the focus measure. Focus measure is based on the variance of the pixels inside the window. This paper includes the experimental results.

  • PDF

WLSD: A Perceptual Stimulus Model Based Shape Descriptor

  • Li, Jiatong;Zhao, Baojun;Tang, Linbo;Deng, Chenwei;Han, Lu;Wu, Jinghui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4513-4532
    • /
    • 2014
  • Motivated by the Weber's Law, this paper proposes an efficient and robust shape descriptor based on the perceptual stimulus model, called Weber's Law Shape Descriptor (WLSD). It is based on the theory that human perception of a pattern depends not only on the change of stimulus intensity, but also on the original stimulus intensity. Invariant to scale and rotation is the intrinsic properties of WLSD. As a global shape descriptor, WLSD has far lower computation complexity while is as discriminative as state-of-art shape descriptors. Experimental results demonstrate the strong capability of the proposed method in handling shape retrieval.

Effect of Train Nose Shape on the High-Speed railway Tunnel Entry Compression Wave (고속열차의 선두부 형상이 터널 입구압력파에 미치는 영향)

  • 김희동;김태호;서태원
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.596-603
    • /
    • 1998
  • The entry compression wave, which is generated at the entrance of the tunnel, is almost always associated with the pressure transients in the tunnel as well as the impulse noise at the exit of the tunnel. It is highly required to design the train nose shape that can minimize such undesirable phenomena. The objective of the current work is to investigate the effects of the train nose shape on the entry compression wave. Numerical computations were applied to one-dimensional unsteady compressible flow in high-speed railway train/tunnel systems. A various shape of train noses were tested for a wide range of train speeds. The results showed that the strength of the entry compression wave is not influenced by the train nose shape, but the time variation of pressure in the entry compression wavefront is strongly related to the train nose shape. The current method of the characteristics was able to represent a desirable nose shape for various train speeds. Optimum nose shape was found to considerably reduce the maximum pressure gradient of the entry compression wave.

  • PDF

The effect of self-identity on body shape management

  • Kim, Jung-ae
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.17-25
    • /
    • 2017
  • The purpose of this study was to investigate the effects of self-identity on body shape management for college students. This study used descriptive research to analyze the effects of self-identity, which has contained factors of Subjectivity, Self-acceptance, Future Confidence, Goal Orientation, Scrupulous. The subjects were 404 college students located in C province who were voluntarily agreed. Multiple regression analysis was conducted to verify the effects on self - identity and body shape management. As a result, self - acceptance of self - identity' subcomponents had no effect on body shape management, but future confirmation, goal orientation, Scrupulous, intimacy affects body shape management(P < 0.001). Based on these results, in order to manage the body shape of college students, it is considered effective to present the visible goals and apply the programs that students can do themselves. In addition, it can be seen that it is effective to start body shape management during college group life to enhance intimacy.

Optimal Shape of $\mu$BGA Solder Joints and Thermal Fatigue Life ($\mu$BGA 솔더접합부의 형상과 수명평가)

  • 신영의;황성진;김종민
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.117-120
    • /
    • 2002
  • In this paper, several methods to predict the solder joint shape are studied. Although there are various methods to predict the solder joint shape, such as truncated sphere method, force-bal tranced analytical solution, and energy-based methods like surface evolver developed by Ken Brakke, we calculate solder joint shape of $\mu$BGA by two solder joint shape prediction methods(truncated sphere method and surface evolver) and then compare results of each method. The results in dicate that two methods can accurately predict the solder joint shape in an accurate range. After that, we calculate reliability solder joint shape under thermal cycle test by FEA program ANSYS. As a result, it could be found that optimal solder joint shape calculated by solder joint prediction method has best reliability in thermal cycle test.

  • PDF

Three Dimensional Shape Morphing of Triangular Net (삼각망의 3 차원 형상 모핑)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.160-170
    • /
    • 2008
  • Shape morphing is the process of transforming a source shape, through intermediate shapes, into a target shape. Two main problems to be considered in three dimensional shape morphing are vertex correspondence and path interpolation. In this paper, an approach which uses the linear interpolation of the Laplacian coordinates of the source and target meshes is introduced for the determination of more plausible path when two topologically identical shapes are morphed. When two shapes to be morphed are different in shape and topology, a new method which combines shape deformation theory based on Laplacian coordinate and mean value coordinate with distance field theory is proposed for the efficient treatment of vertex correspondence and path interpolation problems. The validity and effectiveness of the suggested method was demonstrated by using it to morph large and complex polygon models including male and female whole body models.

Effect of Crystal Shape on the Grain Growth during Liquid Phase Sintering of Ceramics

  • Jo, Wook;Hwang, Nong-Moon;Kim, Doh-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.728-733
    • /
    • 2006
  • The equilibrium or growth shape of ceramic materials is classified largely into two categories according to the thermodynamic conditions imposed. One is a polyhedral shape where the surface free energy is anisotropic, and the other a spherical shape where the surface free energy is isotropic. In the case of grains with a polyhedral shape of anisotropic surface free energy, socalled abnormal grain growth usually takes place due to a significant energy barrier for a growth unit to be attached to the crystal surface. In the case of grains with a spherical shape of isotropic surface free energy, however, normal grain growth with a uniform size distribution takes place. In this contribution, the state-of-the-art of our current understanding of the relationship between the crystal shape and the microstructure evolution during the sintering of ceramic materials in the presence of a liquid phase was discussed.

Shape Design for Viscoelastic Vibration Isolators to Minimize Rotational Stiffness (회전강성 최소화를 위한 절연요소의 형상 설계)

  • Oh, Hwan-Youp;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1250-1255
    • /
    • 2008
  • Design of shape fur visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is fi?equently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs, ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape, where density of either 0 or 1 for finite elements is used fur physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure is presented fur a mount of an air-conditioner compressor system and the effectiveness is discussed.