• Title/Summary/Keyword: SHAP Analysis

Search Result 57, Processing Time 0.03 seconds

Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals (3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발)

  • ChanHyeok Jeong;SangYoun Kim;SungKu Heo;Shahzeb Tariq;MinHyeok Shin;ChangKyoo Yoo
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.523-541
    • /
    • 2023
  • As accessibility to 3D printers increases, there is a growing frequency of exposure to chemicals associated with 3D printing. However, research on the toxicity and harmfulness of chemicals generated by 3D printing is insufficient, and the performance of toxicity prediction using in silico techniques is limited due to missing molecular structure data. In this study, quantitative structure-activity relationship (QSAR) model based on data-centric AI approach was developed to predict the toxicity of new 3D printing materials by imputing missing values in molecular descriptors. First, MissForest algorithm was utilized to impute missing values in molecular descriptors of hazardous 3D printing materials. Then, based on four different machine learning models (decision tree, random forest, XGBoost, SVM), a machine learning (ML)-based QSAR model was developed to predict the bioconcentration factor (Log BCF), octanol-air partition coefficient (Log Koa), and partition coefficient (Log P). Furthermore, the reliability of the data-centric QSAR model was validated through the Tree-SHAP (SHapley Additive exPlanations) method, which is one of explainable artificial intelligence (XAI) techniques. The proposed imputation method based on the MissForest enlarged approximately 2.5 times more molecular structure data compared to the existing data. Based on the imputed dataset of molecular descriptor, the developed data-centric QSAR model achieved approximately 73%, 76% and 92% of prediction performance for Log BCF, Log Koa, and Log P, respectively. Lastly, Tree-SHAP analysis demonstrated that the data-centric-based QSAR model achieved high prediction performance for toxicity information by identifying key molecular descriptors highly correlated with toxicity indices. Therefore, the proposed QSAR model based on the data-centric XAI approach can be extended to predict the toxicity of potential pollutants in emerging printing chemicals, chemical process, semiconductor or display process.

Studying the Comparative Analysis of Highway Traffic Accident Severity Using the Random Forest Method. (Random Forest를 활용한 고속도로 교통사고 심각도 비교분석에 관한 연구)

  • Sun-min Lee;Byoung-Jo Yoon;WutYeeLwin
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.156-168
    • /
    • 2024
  • Purpose: The trend of highway traffic accidents shows a repeating pattern of increase and decrease, with the fatality rate being highest on highways among all road types. Therefore, there is a need to establish improvement measures that reflect the situation within the country. Method: We conducted accident severity analysis using Random Forest on data from accidents occurring on 10 specific routes with high accident rates among national highways from 2019 to 2021. Factors influencing accident severity were identified. Result: The analysis, conducted using the SHAP package to determine the top 10 variable importance, revealed that among highway traffic accidents, the variables with a significant impact on accident severity are the age of the perpetrator being between 20 and less than 39 years, the time period being daytime (06:00-18:00), occurrence on weekends (Sat-Sun), seasons being summer and winter, violation of traffic regulations (failure to comply with safe driving), road type being a tunnel, geometric structure having a high number of lanes and a high speed limit. We identified a total of 10 independent variables that showed a positive correlation with highway traffic accident severity. Conclusion: As accidents on highways occur due to the complex interaction of various factors, predicting accidents poses significant challenges. However, utilizing the results obtained from this study, there is a need for in-depth analysis of the factors influencing the severity of highway traffic accidents. Efforts should be made to establish efficient and rational response measures based on the findings of this research.

Crime Prediction and Factor Analysis of Incheon Metropolitan City Using Explainable Artificial Intelligence (설명 가능 인공지능 기술을 적용한 인천광역시 범죄 예측 및 요인 분석)

  • Kim, Da-Hyun;Kim, You-Kyung;Kim, Hyon-Hee
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.513-515
    • /
    • 2022
  • 본 연구는 범죄를 발생시키는데 관련된 여러가지 요인들을 기반으로 범죄 예측 모델을 생성하고 설명 가능 인공지능 기술을 적용하여 인천 광역시를 대상으로 범죄 발생에 영향을 미치는 요인들을 분석하였다. 범죄 예측 모델 생성을 위해 XG Boost 알고리즘을 적용하였으며, 설명 가능 인공지능 기술로는 Shapley Additive exPlanations (SHAP)을 사용하였다. 기존 관련 사례들을 참고하여 범죄 예측에 사용된 변수를 선정하였고 변수에 대한 데이터는 공공 데이터를 수집하였다. 실험 결과 성매매단속 현황과 청소년 실종 가출 신고 현황이 범죄 발생에 큰 영향을 미치는 주요 요인으로 나타났다. 제안하는 모델은 범죄 발생 지역, 요인들을 미리 예측하여 제시함으로써 범죄 예방에 사용되는 인력자원, 물적자원 등을 용이하게 쓸 수 있도록 활용할 수 있다.

The Impact of Topic Distribution on Review Sentiment: A Comparative Study between South Korea and the U.S.

  • Cho, Mina;Hwang, Dugmee;Jeon, Seongmin
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2022.04a
    • /
    • pp.123-126
    • /
    • 2022
  • Online reviews offer valuable information to businesses by reflecting consumer experiences about their products and services. Two important aspects of online reviews are first, the topics consumers choose to address and second, the sentiments expressed in their reviews. Building upon previous literature that shows online reviews are context-dependent, we examine the impact of topic distribution on review sentiment in South Korea and the U.S. during pre-and post-pandemic periods. After performing topic modeling on Airbnb app review data, we measure the contribution of each topic on review sentiment using SHAP values. Our results indicate variations in topic distribution trends between 2018 and 2021. Also, the order and magnitude of topics' impact on review sentiment change between pre-and post-pandemic periods for both countries. This study can help businesses to understand how topics and sentiments associated with their products and services changed after pandemic, and also help them identify areas of improvement.

  • PDF

Impact of Topic Distribution on Review Sentiment: A Comparative Study between South Korea and the U.S.

  • Mina Cho;Dugmee Hwang;SeongMin Jeon
    • Asia pacific journal of information systems
    • /
    • v.32 no.3
    • /
    • pp.514-536
    • /
    • 2022
  • Online reviews offer valuable information to businesses by reflecting consumer experiences about their products and services. Two crucial aspects of online reviews are the topics consumers choose to address, and the sentiments expressed in their reviews. Building upon previous literature that shows online reviews are context-dependent, we employ the Expectation-Confirmation Theory (ECT) to examine the impact of topic distribution on review sentiment in South Korea and the U.S. during pre- and post-pandemic periods. After applying a topic modeling to Airbnb app review data, we measure the contribution of each topic on review sentiment using SHAP values. Our results indicate variations in topic distribution trends between 2018 and 2021. In addition, the order and magnitude of topics' impact on review sentiment change between pre- and post-pandemic periods for both countries. This study can help businesses understand how topics and sentiments associated with their products and services changed after the pandemic and thus identify areas of improvement.

Optimized machine learning algorithms for predicting the punching shear capacity of RC flat slabs

  • Huajun Yan;Nan Xie;Dandan Shen
    • Advances in concrete construction
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2024
  • Reinforced concrete (RC) flat slabs should be designed based on punching shear strength. As part of this study, machine learning (ML) algorithms were developed to accurately predict the punching shear strength of RC flat slabs without shear reinforcement. It is based on Bayesian optimization (BO), combined with four standard algorithms (Support vector regression, Decision trees, Random forests, Extreme gradient boosting) on 446 datasets that contain six design parameters. Furthermore, an analysis of feature importance is carried out by Shapley additive explanation (SHAP), in order to quantify the effect of design parameters on punching shear strength. According to the results, the BO method produces high prediction accuracy by selecting the optimal hyperparameters for each model. With R2 = 0.985, MAE = 0.0155 MN, RMSE = 0.0244 MN, the BO-XGBoost model performed better than the original XGBoost prediction, which had R2 = 0.917, MAE = 0.064 MN, RMSE = 0.121 MN in total dataset. Additionally, recommendations are provided on how to select factors that will influence punching shear resistance of RC flat slabs without shear reinforcement.

Analysis of Resident's Satisfaction and Its Determining Factors on Residential Environment: Using Zigbang's Apartment Review Bigdata and Deeplearning-based BERT Model (주거환경에 대한 거주민의 만족도와 영향요인 분석 - 직방 아파트 리뷰 빅데이터와 딥러닝 기반 BERT 모형을 활용하여 - )

  • Kweon, Junhyeon;Lee, Sugie
    • Journal of the Korean Regional Science Association
    • /
    • v.39 no.2
    • /
    • pp.47-61
    • /
    • 2023
  • Satisfaction on the residential environment is a major factor influencing the choice of residence and migration, and is directly related to the quality of life in the city. As online services of real estate increases, people's evaluation on the residential environment can be easily checked and it is possible to analyze their satisfaction and its determining factors based on their evaluation. This means that a larger amount of evaluation can be used more efficiently than previously used methods such as surveys. This study analyzed the residential environment reviews of about 30,000 apartment residents collected from 'Zigbang', an online real estate service in Seoul. The apartment review of Zigbang consists of an evaluation grade on a 5-point scale and the evaluation content directly described by the dweller. At first, this study labeled apartment reviews as positive and negative based on the scores of recommended reviews that include comprehensive evaluation about apartment. Next, to classify them automatically, developed a model by using Bidirectional Encoder Representations from Transformers(BERT), a deep learning-based natural language processing model. After that, by using SHapley Additive exPlanation(SHAP), extract word tokens that play an important role in the classification of reviews, to derive determining factors of the evaluation of the residential environment. Furthermore, by analyzing related keywords using Word2Vec, priority considerations for improving satisfaction on the residential environment were suggested. This study is meaningful that suggested a model that automatically classifies satisfaction on the residential environment into positive and negative by using apartment review big data and deep learning, which are qualitative evaluation data of residents, so that it's determining factors were derived. The result of analysis can be used as elementary data for improving the satisfaction on the residential environment, and can be used in the future evaluation of the residential environment near the apartment complex, and the design and evaluation of new complexes and infrastructure.

An Exploratory Approach to Discovering Salary-Related Wording in Job Postings in Korea

  • Ha, Taehyun;Coh, Byoung-Youl;Lee, Mingook;Yun, Bitnari;Chun, Hong-Woo
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.86-95
    • /
    • 2022
  • Online recruitment websites discuss job demands in various fields, and job postings contain detailed job specifications. Analyzing this text can elucidate the features that determine job salaries. Text embedding models can learn the contextual information in a text, and explainable artificial intelligence frameworks can be used to examine in detail how text features contribute to the models' outputs. We collected 733,625 job postings using the WORKNET API and classified them into low, mid, and high-range salary groups. A text embedding model that predicts job salaries based on the text in job postings was trained with the collected data. Then, we applied the SHapley Additive exPlanations (SHAP) framework to the trained model and discovered the significant words that determine each salary class. Several limitations and remaining words are also discussed.

Differentiation of Legal Rules and Individualization of Court Decisions in Criminal, Administrative and Civil Cases: Identification and Assessment Methods

  • Egor, Trofimov;Oleg, Metsker;Georgy, Kopanitsa
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.125-131
    • /
    • 2022
  • The diversity and complexity of criminal, administrative and civil cases resolved by the courts makes it difficult to develop universal automated tools for the analysis and evaluation of justice. However, big data generated in the scope of justice gives hope that this problem will be resolved as soon as possible. The big data applying makes it possible to identify typical options for resolving cases, form detailed rules for the individualization of a court decision, and correlate these rules with an abstract provisions of law. This approach allows us to somewhat overcome the contradiction between the abstract and the concrete in law, to automate the analysis of justice and to model e-justice for scientific and practical purposes. The article presents the results of using dimension reduction, SHAP value, and p-value to identify, analyze and evaluate the individualization of justice and the differentiation of legal regulation. Processing and analysis of arrays of court decisions by computational methods make it possible to identify the typical views of courts on questions of fact and questions of law. This knowledge, obtained automatically, is promising for the scientific study of justice issues, the improvement of the prescriptions of the law and the probabilistic prediction of a court decision with a known set of facts.

Explainable analysis of the Relationship between Hypertension with Gas leakages (설명 가능한 인공지능 기술을 활용한 가스누출과 고혈압의 연관 분석)

  • Dashdondov, Khongorzul;Jo, Kyuri;Kim, Mi-Hye
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.55-56
    • /
    • 2022
  • Hypertension is a severe health problem and increases the risk of other health issues, such as heart disease, heart attack, and stroke. In this research, we propose a machine learning-based prediction method for the risk of chronic hypertension. The proposed method consists of four main modules. In the first module, the linear interpolation method fills missing values of the integration of gas and meteorological datasets. In the second module, the OrdinalEncoder-based normalization is followed by the Decision tree algorithm to select important features. The prediction analysis module builds three models based on k-Nearest Neighbors, Decision Tree, and Random Forest to predict hypertension levels. Finally, the features used in the prediction model are explained by the DeepSHAP approach. The proposed method is evaluated by integrating the Korean meteorological agency dataset, natural gas leakage dataset, and Korean National Health and Nutrition Examination Survey dataset. The experimental results showed important global features for the hypertension of the entire population and local components for particular patients. Based on the local explanation results for a randomly selected 65-year-old male, the effect of hypertension increased from 0.694 to 1.249 when age increased by 0.37 and gas loss increased by 0.17. Therefore, it is concluded that gas loss is the cause of high blood pressure.