References
- Abuodeh, O.R., Abdalla, J.A. and Hawileh, R.A. (2020), "Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques", Appl. Soft. Comput., 95, 106552. https://doi.org/10.1016/j.asoc.2020.106552
- ACI Committee (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
- Alkaissy, M., Arashpour, M., Golafshani, E.M., Hosseini, M.R., Khanmohammadi, S., Bai, Y. and Feng, H.M. (2023), "Enhancing construction safety: Machine learning-based classification of injury types", Safety. Sci., 162, 106102. https://doi.org/10.1016/j.ssci.2023.106102
- Bakouregui, A.S., Mohamed, H.M., Yahia, A. and Benmokrane, B. (2021), "Explainable extreme gradient boosting tree-based prediction of load-carrying capacity of FRP-RC columns", Eng. Struct., 245, 112836. https://doi.org/10.1016/j.engstruct.2021.112836
- Cao, Y., Qiu, R.Z. and Qi, W. (2023), "Simulating the performance of the reinforced concrete beam using artificial intelligence", Adv. Concrete Constr., Int. J., 15(4), 269-286. https://doi.org/10.12989/acc.2023.15.4.269
- CEB-FIP (2001), Punching of structural concrete slabs, CEB-Bull, 12, pp. 215-288.
- Chalupka, K., Williams, C.K.I. and Murray, I. (2013), "A Framework for Evaluating Approximation Methods for Gaussian Process Regression", J. Mach. Learn. Res., 14, 333-350.
- Christopher, C.G., Pachaivannan, P. and Elamparithi, P.N. (2023), "Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN", Adv. Concrete Constr., Int. J., 15(2), 85-96. https://doi.org/10.12989/acc.2023.15.2.085
- Derogar, S., Ince, C., Yatbaz, H.Y. and Ever, E. (2022), "Prediction of punching shear strength of slab-column connections: A comprehensive evaluation of machine learning and deep learning based approaches", Mech. Adv. Mater. Struct. https://doi.org/10.1080/15376494.2022.2134950
- European Committee for Standardization (2004), Design of Concrete Structures (Eurocode 2): Part 1-1: General Rules and Rules for Buildings, British Standards Institution, Brussels, Belgium.
- Faridmehr, I., Nehdi, M.L. and Baghban, M. (2022), "Novel informational bat-ANN model for predicting punching shear of RC flat slabs without shear reinforcement", Eng. Struct., 256, 114030. https://doi.org/10.1016/j.engstruct.2022.114030
- Federation International du Beton (2010), FIB Model Code for Concrete Structures (Model Code), Wiley-Blackwell, Berlin, Germany.
- Feng, D.C., Wang, W.J., Mangalathu, S., Hu, G. and Wu, T. (2021), "Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements", Eng. Struct., 235, 111979. https://doi.org/10.1016/j.engstruct.2021.111979
- Feng, J.P., Zhang, H.W., Gao, K., Liao, Y.C., Yang, J. and Wu, G. (2023), "A machine learning and game theory-based approach for predicting creep behavior of recycled aggregate concrete", Case Stud. Constr. Mater., 17, e01653. https://doi.org/10.1016/j.cscm.2022.e01653
- Gupta, M., Raj, R. and Sahu, A.K. (2022), "EDNN based prediction of strength and durability properties of HPC using fibres & copper slag", Adv. Concrete Constr., Int. J., 14(3), 185-194. https://doi.org/10.12989/acc.2022.14.3.185
- Inacio, M.M.G., Ramos, A.P. and Faria, D.M.V. (2012), "Strengthening of flat slabs with transverse reinforcement by introduction of steel bolts using different anchorage approaches", Eng. Struct., 44, 63-77. https://doi.org/10.1016/j.engstruct.2012.05.043
- Jian, G., Wen, S. and Wei, L. (2022), "Use of multi-hybrid machine learning and deep artificial intelligence in the prediction of compressive strength of concrete containing admixtures", Adv. Concrete Constr., Int. J., 13(1), 11-23. https://doi.org/10.12989/acc.2022.13.1.011
- Jiao, Z.Y., Li, Y., Guan, H., Diao, M.Z., Yang, Z., Wang, J.K. and Li, Y.C. (2022), "Pre- and post-punching failure performances of flat slab-column joints with drop panels and shear studs", Eng. Fail. Anal., 140, 106604. https://doi.org/10.1016/j.engfailanal.2022.106604
- Kang, S.M., Na, S.J., Hwang, H.J. and Kim, S.I. (2022), "Punching shear strength improved by upward panel in reinforced concrete transfer slabs", J. Build. Eng., 46, 103753. https://doi.org/10.1016/j.jobe.2021.103753
- Kaya, M., Komur, M.A. and Gursel, E. (2022), "Maturation effect on strength of high-strength concretes which produced with different origin aggregates", Adv. Concrete Constr., Int. J., 14(2), 115-130. https://doi.org/10.12989/acc.2022.14.2.115
- Latif, I., Banerjee, A. and Surana, M. (2022), "Explainable machine learning aided optimization of masonry infilled reinforced concrete frames", Structures, 44, 1751-1766. https://doi.org/10.1016/j.istruc.2022.08.115
- Li, K., Pan, L. and Wang, Y.F. (2022), "Random forest-based modelling of parameters of fractional derivative concrete creep model with Bayesian optimization", Mater. Struct., 55(8), 215. https://doi.org/10.1617/s11527-022-02054-z
- Liang, S.X., Shen, Y.X. and Ren, X.D. (2022), "Comparative study of influential factors for punching shear resistance/failure of RC slab-column joints using machine-learning models", Structures, 45, 1333-1349. https://doi.org/10.1016/j.istruc.2022.09.110
- Lovrovich, J.S. and Mclean, D.I. (1990), "Punching shear behavior of slabs with varying span-depth ratios", ACI. Struct. J., 87(5), 507-511.
- Mangalathu, S., Karthikeyan, K., Feng, D.C. and Jeon, J.S. (2021a), "Machine-learning interpretability techniques for seismic performance assessment of infrastructure systems", Eng. Struct., 250, 112883. https://doi.org/10.1016/j.engstruct.2021.112883
- Mangalathu, S., Shin, H., Choi, E. and Jeon, J.S. (2021b), "Explainable machine learning models for punching shear strength estimation of flat slabs without transverse reinforcement", J. Build. Eng., 39, 102300. https://doi.org/10.1016/j.jobe.2021.102300
- Marzouk, H. and Hussein, A. (1991), "Expreimental investigation on the behavior of high-strength concrete slabs", ACI. Struct. J., 88(6), 701-713. https://doi.org/10.12989/cac.2012.91.4.1301
- Mellios, N., Uz, O. and Spyridis, P. (2022), "Data-based modeling of the punching shear capacity of concrete structures", Eng. Struct., 275(A), 115195. https://doi.org/10.1016/j.engstruct.2022.115195
- Mousavi, M., Gandomi, A.H., Holloway, D. and Chen, F. (2022), "Machine learning analysis of features extracted from time-frequency domain of ultrasonic testing results for wood material assessment", Constr. Build. Mater., 342(A), 127761. https://doi.org/10.1016/j.conbuildmat.2022.127761
- Qiu, Y.G., Zhou, J., Khandelwal, W., Yang, H.T., Yang, P.X. and Li, C.Q. (2021), "Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration", Eng. Comput., 38(SUPPL 5), 4145-4162. https://doi.org/10.1007/s00366-021-01393-9
- Rad, M.H.G., Nayeban, M.M. and Kazemi, M. (2022), "Externally bonded FRP and mechanically fastened by nailing: A new technique to postpone debonding of FRP sheets in unreinforced concrete slabs", Adv. Concrete Constr., Int. J., 14(6), 413-425. https://doi.org/10.12989/acc.2022.14.6.413
- Schulz, E., Speekenbrink, M. and Krause, A. (2018), "A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions", J. Math. Psychol., 85, 1-16. https://doi.org/10.1016/j.jmp.2018.03.001
- Shen, L.L., Shen, Y.X. and Liang, S.X. (2022a), "Reliability analysis of RC slab-column joints under punching shear load using a machine learning-based surrogate model", Buildings, 12(10), 1750. https://doi.org/10.3390/buildings12101750
- Shen, Y.X., Wu, L.F. and Liang, S.X. (2022b), "Explainable machine learning-based model for failure mode identification of RC flat slabs without transverse reinforcement", Eng. Fail. Anal., 141, 106647. https://doi.org/10.1016/j.engfailanal.2022.106647
- Shi, Q.X., Ma, G., Guo, J.R. and Ma, C.C. (2022), "Punching performance of RC slab-column connections with inner steel truss", Adv. Concrete Constr., Int. J., 14(3), 195-204. https://doi.org/10.12989/acc.2022.14.3.195
- Tian, Y., Jirsa, J.O. and Bayrak, O. (2012), "Strength evaluation of interior slab-column connections", ACI Struct. J., 105(6), 692-700.
- Truong, G.T., Choi, K.K, Nguyen, T.H. and Kim, C.S. (2023), "Prediction of shear strength of RC deep beams using XGBoost regression with Bayesian optimization", Eur. J. Environ. Civil Eng., 27(14), 4046-4066. https://doi.org/10.1080/19648189.2023.2169357
- Walkner, R. (2014), "Critical review of EC2 regarding punching and improving the design approach", Ph.D. Dissertation; University of Innsbruck, Innsbruck, Austria.
- Wang, X.W., Mazumder, R.K., Salarieh, B., Salman, A.M., Shafieezadeh, A. and Li, Y. (2022), "Machine learning for risk and resilience assessment in structural engineering: Progress and Future Trends", J. Struct. Eng., 148(8), 03122003. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003392
- Wang, Z., Liu, T.X., Long, Z.L., Wang, J.Q. and Zhang, J. (2023), "Predicting the drift capacity of precast concrete columns using explainable machine learning approach", Eng. Struct., 282, 115771. https://doi.org/10.1016/j.engstruct.2023.115771
- Wu, Y.Q. and Zhou, Y.S. (2022), "Prediction and feature analysis of punching shear strength of two-way reinforced concrete slabs using optimized machine learning algorithm and Shapley additive explanations", Mech. Adv. Mater. Struct., 30(15), 3086-3096. https://doi.org/10.1080/15376494.2022.2068209
- Wu, Y.F., Chen, H., Peng, F. and Yi, W.J. (2021), "Experimental investigation on punching shear mechanism of concrete interior slab-column connections without shear reinforcement", J. Struct. Eng., 148(2), 04021250. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003222
- Yin, H., Liu, S.X., Lu, S.S., Nie, W. and Jia, B.X. (2021), "Prediction of the compressive and tensile strength of HPC concrete with fly ash and micro-silica using hybrid algorithms", Adv. Concrete Constr., Int. J., 12(4), 339-354. https://doi.org/10.12989/acc.2021.12.4.339
- Zhang, W., Xue, J.Y., Xu, J.J., Li, B.X. and Wei, J.H. (2022), "Bearing capacity assessment of reinforced concrete slab - special-shaped column connections", Adv. Concrete. Constr., Int. J., 14(6), 401-412. https://doi.org/10.12989/acc.2022.14.6.401