• Title/Summary/Keyword: SH3GL1

Search Result 2, Processing Time 0.016 seconds

Reduced Expression of Limd1 in Ulcerative Oral Epithelium Associated with Tobacco and Areca Nut

  • Maiti, Guru Prasad;Ghosh, Amlan;Chatterjee, Ramdas;Roy, Anup;Sharp, Tyson V.;Roychoudhury, Susanta;Panda, Chinmay Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4341-4346
    • /
    • 2012
  • Purpose: The aim of this study was to cast light on initiating molecular events associated with the development of premalignant oral lesions induced by tobacco and/or areca nut. Method: Immunohistochemical analyses of cell cycle regulatory proteins (LIMD1, RBSP3, p16, RB, phosphorylated RB, p53), EGFR and SH3GL2 (EGFR associated protein) were performed with inflammatory/ulcerative epithelium and adjacent hyperplastic/mild dysplastic lesions. Results: No change in expression of the proteins was seen in inflammatory epithelium. Reduced nuclear expression of LIMD1 was evident in ulcerative epithelium. In hyperplastic lesions, reduced expression of RBSP3, p16, SH3GL2 and overexpression of p-RB and EGFR were apparent. Reduced nuclear expression of p53 was observed in mild dysplastic lesions. Conclusion: Our data suggest that inactivation of LIMD1 in ulcerative epithelium might predispose the tissues to alterations of other cell cycle regulatory and EGFR signaling proteins needed for the development of premalignant oral lesions.

Endophilin A2: A Potential Link to Adiposity and Beyond

  • Alfadda, Assim A.;Sallam, Reem M.;Gul, Rukhsana;Hwang, Injae;Ka, Sojeong
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.855-863
    • /
    • 2017
  • Adipose tissue plays a central role in regulating dynamic cross-talk between tissues and organs. A detailed description of molecules that are differentially expressed upon changes in adipose tissue mass is expected to increase our understanding of the molecular mechanisms that underlie obesity and related metabolic co-morbidities. Our previous studies suggest a possible link between endophilins (SH3Grb2 proteins) and changes in body weight. To explore this further, we sought to assess the distribution of endophilin A2 (EA2) in human adipose tissue and experimental animals. Human paired adipose tissue samples (subcutaneous and visceral) were collected from subjects undergoing elective abdominal surgery and abdominal liposuction. We observed elevated EA2 gene expression in the subcutaneous compared to that in the visceral human adipose tissue. EA2 gene expression negatively correlated with adiponectin and chemerin in visceral adipose tissue, and positively correlated with $TNF-{\alpha}$ in subcutaneous adipose tissue. EA2 gene expression was significantly downregulated during differentiation of preadipocytes in vitro. In conclusion, this study provides a description of EA2 distribution and emphasizes a need to study the roles of this protein during the progression of obesity.