Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0137

Endophilin A2: A Potential Link to Adiposity and Beyond  

Alfadda, Assim A. (Obesity Research Center, College of Medicine, King Saud University)
Sallam, Reem M. (Obesity Research Center, College of Medicine, King Saud University)
Gul, Rukhsana (Obesity Research Center, College of Medicine, King Saud University)
Hwang, Injae (Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University)
Ka, Sojeong (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Abstract
Adipose tissue plays a central role in regulating dynamic cross-talk between tissues and organs. A detailed description of molecules that are differentially expressed upon changes in adipose tissue mass is expected to increase our understanding of the molecular mechanisms that underlie obesity and related metabolic co-morbidities. Our previous studies suggest a possible link between endophilins (SH3Grb2 proteins) and changes in body weight. To explore this further, we sought to assess the distribution of endophilin A2 (EA2) in human adipose tissue and experimental animals. Human paired adipose tissue samples (subcutaneous and visceral) were collected from subjects undergoing elective abdominal surgery and abdominal liposuction. We observed elevated EA2 gene expression in the subcutaneous compared to that in the visceral human adipose tissue. EA2 gene expression negatively correlated with adiponectin and chemerin in visceral adipose tissue, and positively correlated with $TNF-{\alpha}$ in subcutaneous adipose tissue. EA2 gene expression was significantly downregulated during differentiation of preadipocytes in vitro. In conclusion, this study provides a description of EA2 distribution and emphasizes a need to study the roles of this protein during the progression of obesity.
Keywords
adipose tissue; endophilin A2; obesity; SH3GL1;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 McTernan, P.G., Anderson, L.A., Anwar, A.J., Eggo, M.C., Crocker, J., Barnett, A.H., Stewart, P.M., and Kumar, S. (2002). Glucocorticoid regulation of p450 aromatase activity in human adipose tissue: gender and site differences. J. Clin. Endocrinol. Metabol. 87, 1327-1336.   DOI
2 Montague, C.T., Prins, J.B., Sanders, L., Zhang, J., Sewter, C.P., Digby, J., Byrne, C.D., and O'Rahilly, S. (1998). Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47, 1384-1391.   DOI
3 O'Rahilly, S. (2016). Harveian Oration 2016: Some observations on the causes and consequences of obesity. Clin. Med. 16, 551-564.
4 Ochoa, G.C., Slepnev, V.I., Neff, L., Ringstad, N., Takei, K., Daniell, L., Kim, W., Cao, H., McNiven, M., Baron, R., et al. (2000). A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol. 150, 377-389.   DOI
5 Palfy, M., Remenyi, A., and Korcsmaros, T. (2012). Endosomal crosstalk: meeting points for signaling pathways. Trends Cell Biol. 22, 447-456.   DOI
6 Peter, B.J., Kent, H.M., Mills, I.G., Vallis, Y., Butler, P.J., Evans, P.R., and McMahon, H.T. (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495-499.   DOI
7 Ringstad, N., Gad, H., Low, P., Di Paolo, G., Brodin, L., Shupliakov, O., and De Camilli, P. (1999). Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24, 143-154.   DOI
8 Romacho, T., Elsen, M., Rohrborn, D., and Eckel, J. (2014). Adipose tissue and its role in organ crosstalk. Acta Physiol (Oxf) 210, 733-753.   DOI
9 Ross, J.A., Chen, Y., Muller, J., Barylko, B., Wang, L., Banks, H.B., Albanesi, J.P., and Jameson, D.M. (2011). Dimeric endophilin A2 stimulates assembly and GTPase activity of dynamin 2. Biophys. J. 100, 729-737.   DOI
10 Saksela, K., and Permi, P. (2012). SH3 domain ligand binding: What's the consensus and where's the specificity? FEBS Lett. 586, 2609-2614.   DOI
11 Samaras, K., Botelho, N.K., Chisholm, D.J., and Lord, R.V. (2010). Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity (Silver Spring) 18, 884-889.   DOI
12 Sanchez-Barrena, M.J., Vallis, Y., Clatworthy, M.R., Doherty, G.J., Veprintsev, D.B., Evans, P.R., and McMahon, H.T. (2012). Bin2 is a membrane sculpting N-BAR protein that influences leucocyte podosomes, motility and phagocytosis. PLoS One 7, e52401.   DOI
13 Alessi, M.C., Peiretti, F., Morange, P., Henry, M., Nalbone, G., and Juhan-Vague, I. (1997). Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 46, 860-867.   DOI
14 Tang, Y., Hu, L.A., Miller, W.E., Ringstad, N., Hall, R.A., Pitcher, J.A., DeCamilli, P., and Lefkowitz, R.J. (1999). Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1-adrenergic receptor. Proc. Natl. Acad. Sci. USA 96, 12559-12564.   DOI
15 Shimada, A., Niwa, H., Tsujita, K., Suetsugu, S., Nitta, K., Hanawa-Suetsugu, K., Akasaka, R., Nishino, Y., Toyama, M., Chen, L., et al. (2007). Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129, 761-772.   DOI
16 Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W.Y., and Dikic, I. (2002). Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183-187.   DOI
17 Speakman, J.R., and Mitchell, S.E. (2011). Caloric restriction. Mol. Aspects Med. 32, 159-221.   DOI
18 Suganami, T., Nishida, J., and Ogawa, Y. (2005). A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler. Thromb. Vasc. Biol. 25, 2062-2068.   DOI
19 Sun, K., Kusminski, C.M., and Scherer, P.E. (2011). Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094-2101.   DOI
20 Tsihlias, E.B., Gibbs, A.L., McBurney, M.I., and Wolever, T.M. (2000). Comparison of high- and low-glycemic-index breakfast cereals with monounsaturated fat in the long-term dietary management of type 2 diabetes. Am. J. Clin. Nutr. 72, 439-449.   DOI
21 Vogel, C., and Marcotte, E.M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227-232.   DOI
22 Wellen, K.E., and Hotamisligil, G.S. (2005). Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111-1119.   DOI
23 Balshem, H., Helfand, M., Schunemann, H.J., Oxman, A.D., Kunz, R., Brozek, J., Vist, G.E., Falck-Ytter, Y., Meerpohl, J., Norris, S., et al. (2011). GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 64, 401-406.   DOI
24 Yam, J.W., Jin, D.Y., So, C.W., and Chan, L.C. (2004). Identification and characterization of EBP, a novel EEN binding protein that inhibits Ras signaling and is recruited into the nucleus by the MLL-EEN fusion protein. Blood 103, 1445-1453.
25 Alfadda, A.A., Fatma, S., Chishti, M.A., Al-Naami, M.Y., Elawad, R., Mendoza, C.D., Jo, H., and Lee, Y.S. (2012a). Orosomucoid serum concentrations and fat depot-specific mRNA and protein expression in humans. Mol. Cells 33, 35-41.   DOI
26 Alfadda, A.A., Sallam, R.M., Chishti, M.A., Moustafa, A.S., Fatma, S., Alomaim, W.S., Al-Naami, M.Y., Bassas, A.F., Chrousos, G.P., and Jo, H. (2012b). Differential patterns of serum concentration and adipose tissue expression of chemerin in obesity: adipose depot specificity and gender dimorphism. Mol. Cells 33, 591-596.   DOI
27 Alfadda, A.A., Turjoman, A.A., Moustafa, A.S., Al-Naami, M.Y., Chishti, M.A., Sallam, R.M., Gibson, D., and Duncan, M.W. (2014). A proteomic analysis of excreted and circulating proteins from obese patients following two different weight-loss strategies. Exp. Biol. Med. (Maywood) 239, 568-580.   DOI
28 Baldassarre, T., Watt, K., Truesdell, P., Meens, J., Schneider, M.M., Sengupta, S.K., and Craig, A.W. (2015). Endophilin A2 promotes TNBC cell invasion and tumor metastasis. Mol. Cancer Res. 13, 1044-1055.   DOI
29 Bouwman, F.G., Claessens, M., van Baak, M.A., Noben, J.P., Wang, P., Saris, W.H., and Mariman, E.C. (2009). The physiologic effects of caloric restriction are reflected in the in vivo adipocyte-enriched proteome of overweight/obese subjects. J. Proteome Res. 8, 5532-5540.   DOI
30 Bouwman, F.G., Wang, P., van Baak, M., Saris, W.H., and Mariman, E.C. (2014). Increased beta-oxidation with improved glucose uptake capacity in adipose tissue from obese after weight loss and maintenance. Obesity 22, 819-827.   DOI
31 Farsad, K., Ringstad, N., Takei, K., Floyd, S.R., Rose, K., and De Camilli, P. (2001). Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193-200.   DOI
32 Cao, H. (2014). Adipocytokines in obesity and metabolic disease. J. Endocrinol. 220, T47-59.   DOI
33 Conner, S.D., and Schmid, S.L. (2003). Regulated portals of entry into the cell. Nature 422, 37-44.   DOI
34 Curtis, K.M., Gomez, L.A., Rios, C., Garbayo, E., Raval, A.P., Perez-Pinzon, M.A., and Schiller, P.C. (2010). EF1alpha and RPL13a represent normalization genes suitable for RT-qPCR analysis of bone marrow derived mesenchymal stem cells. BMC Mol. Biol. 11, 61.   DOI
35 Fried, S.K., Bunkin, D.A., and Greenberg, A.S. (1998). Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metabol. 83, 847-850.
36 Gu, Y., Zhao, A., Huang, F., Zhang, Y., Liu, J., Wang, C., Jia, W., and Xie, G. (2013). Very low carbohydrate diet significantly alters the serum metabolic profiles in obese subjects. J. Proteome Res. 12, 5801-5811.   DOI
37 Henne, W.M., Kent, H.M., Ford, M.G., Hegde, B.G., Daumke, O., Butler, P.J., Mittal, R., Langen, R., Evans, P.R., and McMahon, H.T. (2007). Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15, 839-852.   DOI
38 Hotamisligil, G.S. (2006). Inflammation and metabolic disorders. Nature 444, 860-867.   DOI
39 Itoh, T., and De Camilli, P. (2006). BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta 1761, 897-912.   DOI
40 Huang, E.W., Liu, C.Z., Liang, S.J., Zhang, Z., Lv, X.F., Liu, J., Zhou, J.G., Tang, Y.B., and Guan, Y.Y. (2016). Endophilin-A2-mediated increase in scavenger receptor expression contributes to macrophage-derived foam cell formation. Atherosclerosis 254, 133-141.   DOI
41 Kamal, A.H., Kim, W.K., Cho, K., Park, A., Min, J.K., Han, B.S., Park, S.G., Lee, S.C., and Bae, K.H. (2013). Investigation of adipocyte proteome during the differentiation of brown preadipocytes. J. Proteomics 94, 327-336.   DOI
42 Kim, S.Y., Kim, A.Y., Lee, H.W., Son, Y.H., Lee, G.Y., Lee, J.W., Lee, Y.S., and Kim, J.B. (2010). miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem. Biophys. Res. Commun. 392, 323-328.   DOI
43 Kjaerulff, O., Brodin, L., and Jung, A. (2011). The structure and function of endophilin proteins. Cell Biochem. Biophys. 60, 137-154.   DOI
44 Lee, Y.S., Kim, A.Y., Choi, J.W., Kim, M., Yasue, S., Son, H.J., Masuzaki, H., Park, K.S., and Kim, J.B. (2008). Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol. Endocrinol. 22, 2176-2189.   DOI
45 Liu, C.Z., Li, X.Y., Du, R.H., Gao, M., Ma, M.M., Li, F.Y., Huang, E.W., Sun, H.S., Wang, G.L., and Guan, Y.Y. (2016). Endophilin A2 influences volume-regulated chloride current by mediating ClC-3 trafficking in vascular smooth muscle cells. Circ. J. 80, 2397-2406.   DOI
46 McGown, C., Birerdinc, A., and Younossi, Z.M. (2014). Adipose tissue as an endocrine organ. Clin. Liver Dis. 18, 41-58.   DOI