• Title/Summary/Keyword: SH-reagents

Search Result 11, Processing Time 0.026 seconds

The Mitochondrial Tricarboxylate Carrier of Silver Eel: Chemical Modification by Sulfhydryl Reagents

  • Capobianco, Loredana;Impagnatiello, Tecla;Ferramosca, Alessandra;Zara, Vincenzo
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.515-521
    • /
    • 2004
  • The tricarboxylate (or citrate) carrier was purified from eel liver mitochondria and functionally reconstituted into liposomes. Incubation of the proteoliposomes with various sulfhydryl reagents led to inhibition of the reconstituted citrate transport activity. Preincubation of the proteoliposomes with reversible SH reagents, such as mercurials and methanethiosulfonates, protected the eel liver tricarboxylate carrier against inactivation by the irreversible reagent N-(1-pyrenyl)maleimide (PM). Citrate and L-malate, two substrates of the tricarboxylate carrier, protected the protein against inactivation by sulfhydryl reagents and decreased the fluorescent PM bound to the purified protein. These results suggest that the eel liver tricarboxylate carrier requires a single population of free cysteine(s) in order to manifest catalytic activity. The reactive cysteine(s) is most probably located at or near the substrate binding site of the carrier protein.

Effects of Ichungwhan on the Aging Process (이정환(二精丸)이 노화과정에 미치는 영향)

  • Jeong, Ji-Cheon;Hyun, Min-Kyung
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.379-389
    • /
    • 2005
  • Objectives: It is well known that aging and aging-related diseases are linked to the increased level of oxidative stress caused by reactive oxygen species(ROS) and reactive nitrogen species(RNS). Nonprotein-SH decreases during aging, while substances such as ROS, nitric oxide(NO), peroxynitrite($ONOO^-$), myeloperoxidase(MPO), and dityrosine show a significant increase. This study investigated the effect of Ichungwhan on the aging process by examining its effect on the generation of the above-mentioned substances. Methods: Four comparison groups of SD rats were used. They were 6 month-old rats, 24 month-old rats, and 24 month-old rats fed with food containing 0.1% and 0.3% of Ichungwhan extract. The amount of NO, $ONOO^-$, and ROS in the rats' kidneys were examined using a fluorescence microplate reader. The reagents used for this purpose include: dihydrorhodamine 123 (DHR 123), 2',7' -dichlorodihydrofluorescein, diacetate(DCFDA), and 4,5-diaminofluorescein(DAF-2). A spectrophotometer was used to investigate the reactivity of nonprotein-SH and myeioperoxidase(MPO), using reagents such as trichloroacetic acid(TCA) and tetramethylbenzidine(TMB). The amounts of MPO protein and dityrosine were measued by western blot. Results: The observed effects of Ichungwhan on rats were as follows: increase of nonprotein-SH; effective decrease of RNS level by suppression of the generation system of $ONOO^-$ and NO; decrease of ROS level; decrease of the MPO reactivity and the subsequent reduction of amount of MPO protein; retardation of dityrosine formation. It can be hypothesized, therefore, that Ichungwhan affects both the earlier and later phases of the molecular inflammatory process, and retards the aging process. Conclusions: Empirical evidence in this study supports a role for Ichungwhan in generation mechanisms of aging process-linked substances ROS, NO, $ONOO^-$, nonprotein-SH, MPO and dityrosine. Affects contrary to the aging process observed in rats beg further empiricism to investigate potential application of Ichungwhan as a medication for age-related diseases in humans.

  • PDF

Cremastranone-Derived Homoisoflavanes Suppress the Growth of Breast Cancer Cells via Cell Cycle Arrest and Caspase-Independent Cell Death

  • Yeram Choi;Sangkyu Park;Seul Lee;Ha-Eun Shin;Sangil Kwon;Jun-Kyu Choi;Myeong-Heon Lee;Seung-Yong Seo;Younghee Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.526-535
    • /
    • 2023
  • Breast cancer is the most common cancer and a frequent cause of cancer-related deaths among women wordlwide. As therapeutic strategies for breast cancer have limitations, novel chemotherapeutic reagents and treatment strategies are needed. In this study, we investigated the anti-cancer effect of synthetic homoisoflavane derivatives of cremastranone on breast cancer cells. Homoisoflavane derivatives, SH-17059 and SH-19021, reduced cell proliferation through G2/M cell cycle arrest and induced caspase-independent cell death. These compounds increased heme oxygenase-1 (HO-1) and 5-aminolevulinic acid synthase 1 (ALAS1), suggesting downregulation of heme. They also induced reactive oxygen species (ROS) generation and lipid peroxidation. Furthermore, they reduced expression of glutathione peroxidase 4 (GPX4). Therefore, we suggest that the SH-17059 and SH-19021 induced the caspase-independent cell death through the accumulation of iron from heme degradation, and the ferroptosis might be one of the potential candidates for caspase-independent cell death.

Characterization of Cysteine Residues in Cabbage Phospholipase D by Sulfhydryl Group Modifying Chemicals (설프히드릴 변형 화합물질들에 의한 양배추 포스포리파제 D의 시스테인 잔기의 특성)

  • Go, Eun-Hui
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.5
    • /
    • pp.362-368
    • /
    • 2006
  • SH group modifying chemicals were used to characterize the eight cysteine residues of cabbage PLD. 5,5-dithiobis(2-nitrobenzoate)(DTNB) was used to titrate the SH group of cysteine residues . Based on the optical density at 412nm due to the reduced DTNB, 4 SH groups are found to be present in a native PLD while 8 SH groups in the denatured PLD whose tertiary structure was perturbed by 8M urea. The results imply that among the 8 cysteine residues of PLD, the half(4) are exposed on the surface whereas the other half are present at the interior of the enzyme tertiary structure. The PLD was inactivated by SH modifying reagents such as p-chloromercuribenzoate(PCMB), iodoacetate, iodoacetamide, and N-ethylmaleimide. At the addition of dithiothreitol(DTT) only the PCMB inhibited PLD activity was recovered reversibly. The micro-environment of the exposed SH group of cysteine residues was examined with various disulfide compounds with different functional groups and we found that anionic or neutral disulfides appear to be more effective than the positively charged cystamine for inactivating the PLD activity. The effect of redox state of cysteine residues on the PLD activity was further explored with H2O2. The oxidation of SH groups by H2O2 inhibited the PLD activity more than 70%, which was mostly recovered by DTT. From these results, we could confirm chemically that all the cysteine residues of PLD are present as in their reduced SH forms and the 4 SH groups exposed on the surface of the enzyme may play important roles in the regulation of PLD activity.

Kinetics of Intracellular Adenosine Deaminase to Substrate Analogs and Inhibitors in Aspergillus oryzae (Aspergillus oryzae의 세포내 효소인 Adenosine Deaminase의 기질 유사체와 억제물질에 대한 반응속도론적 분석)

  • Choi, Hye-Seon
    • Korean Journal of Microbiology
    • /
    • v.32 no.1
    • /
    • pp.84-90
    • /
    • 1994
  • Kinetic parameters of various substrates and inhibitors were measured to elucidate the binding requirements of the active site of intracellular adenosine deaminase (ADA) in Aspergillus oryzae. 3'-Deoxyadenosine was the best substrate according to the value of relative kcat/$K_m$. Purine riboside was found to be the strongest inhibitor with the $K_i$ value of $3.7{\times}10^{-5}$M. Adenine acted neither as a substrate nor as an inhibitor, suggesting the presence of ribose at N-9 of adenosine was crucial to binding. ADA also catalyzed the dechlorination of 6-chloropurine riboside, generating inosine and chloride ions. Substrate specificity of 6-chloropurine riboside was 0.86% of adenosine. Purine riboside, a competitive inhibitor of ADA, inhibit the dechlorination with similar $K_i$ value, suggesting that the same binding site was involved in deamination and dechlorination. Among the sulfhydryl group reagents, mercurials, pchloromercuribenzoate (PCMB), mersalyl acid and $HgCl_2$ inactivated the enzyme. Mersalyl acid-inactivated ADA was reactivated by thiol reagents, but PCMB-inactivated enzyme was not. When ADA was treated with the mercurial reagents, the inhibition constants and inhibition patterns were determined. Each inhibition was competitive with substrate. The $K_i$ values of these mercurial reagents were lower in 10 mM phosphate buffer than in 100 mM phosphate buffer, showing phosphate dependency.

  • PDF

Partial Purification and Characterization of ${\beta}$-Ketothiolase from Alcaligenes sp. SH-69

  • Oh, Deok-Hwan;Chung, Chung-Wook;Kim, Jeong-Yoon;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.360-364
    • /
    • 1997
  • A ${\beta}$-ketothiolase was purified 180-fold from the cell extracts of Alcaligenes sp. SH-69 by a series of chromatography on DEAE-Dephadex A-50, Sephacryl S-200, and hydrozyapatitie columns, The optimum pH values of the partially purified enzyme were 7.5 for condensation reaction and 8.3 for thiolysis reaction were estimated to be 0.12mM and $18.7\;{\mu}M$, respectively. The $K_m$ valued for acetoacetyl-CoA and free CoASH in the thiolusis in the condensation reaction was 0.70mM. The condensation reaction of the ${\beta}$-ketothiolase was inhibited even by low concentrations of free CoASH($K_i=30.4{\mu}M$). Pretreatment of the enzyme with NADH and NADPH markedly inhibited the thiolysis reaction of the enzyme. The potent inhibition of the enzyme by sulfhydryl reagents suggests the involvement of cystein residue in the active site.

  • PDF

Characterization of the Binding Activity of Virginiae Butanolide C Binding Protein in Streptomyces virginiae (Streptomyces virginiae가 생산하는 Virginiae Butanolide C(VB-C) 결합단백질의 결합활성에 미치는 일반적 특성)

  • 김현수
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.257-262
    • /
    • 1992
  • Virginiae butanolide (VB) is an autoregulator which triggers virginiamycin production in Strefltomyces virginiae. VB-C binding protein activity was investigated under various additives. The VB-C binding protein was almost fully observed in sotubte fraction (>90%) and the binding activity was optimum at pH 7.0. The VB-C binding activity was increased about 15% in 0.5 M KCI, whereas decreased about 60% in 20 mM $Mo^{6+}$. Chelating reagents (ethylenediarnine tetraacetic acid, ethyleneglycol bis(2-aminoethylether) tetraacetic acid, 8-hydroxyquinoline) and SH protecting reagents (rnercaptoethanol, dithiothreitol, thioglycerol) inhibited the VB-C binding activity about 30~55% and 3~20%, respectively. Serine protease inhibitor (phenyl methane sulfonyl fluoride), nucleotides (guanosine 5'-monophosphate, adenosine 3',5'-cyclic monophosphate), and phosphatases (alkaline, acid phosphatase) increased the VB-C binding activity about 17%, 6~20%, and 4- 13%, respectively.

  • PDF

Increased Association of ${\alpha}$-synuclein to Perturbed Cellular Membranes

  • Kim, Yoon-Suk;Lee, Seung-Jae
    • Biomedical Science Letters
    • /
    • v.17 no.2
    • /
    • pp.167-171
    • /
    • 2011
  • [ ${\alpha}$ ]synuclein (${\alpha}$-syn) is implicated in the pathogenesis of Parkinson's disease (PD) and other related diseases. We have previously reported that ${\alpha}$-syn binds to the cell membranes in a transient and reversible manner. However, little is known about the physiologic function and/or consequence of this association. Here, we examined whether chemically induced perturbations to the cellular membranes enhance the binding of ${\alpha}$-syn, based on hypothesis that ${\alpha}$-syn may play a role in maintenance of membrane integrity or repair. We induced membrane perturbations or alterations in ${\alpha}$-syn-overexpressing human neuroblastoma cells (SH-SY5Y) by treating the cells with hydrogen peroxide ($H_2O_2$) or oleic acid. In addition, membranes fractionated from these cells were perturbed by treating them with proteinase K or chloroform. Dynamic interaction of ${\alpha}$-syn to the membranes was analyzed by the chemical cross-linking assay that we developed in the previous study. We found that membrane interaction of ${\alpha}$-syn was increased upon treatment with membrane-perturbing reagents in a dose and time dependent manner. These results suggest that perturbations in the cellular membranes cause increased binding of ${\alpha}$-syn, and this may have significant implication in the physiological function of ${\alpha}$-syn in cells.

Induction of Stress Proteins in the SCK Tumor Cells (SCK종양 세포에서Stress Protein의 합성유도)

  • 강만식;김경희
    • The Korean Journal of Zoology
    • /
    • v.31 no.3
    • /
    • pp.157-164
    • /
    • 1988
  • SCK tumor cells were exposed to heat shock or several sulihydryl-reacting agents such as iodoacetamide(IAA), zinc chloride(Zn), and 2-mercaptoethanol(ME). Stress proteins induced by these agents were examined and the relationship between the induction of stress proteins and the production of abnormal proteins was discussed. Based on the present experiments, two classes of intracellular pathways for the induction of stress proteins were defined; one dependent on and the other independent of protein synthesis. The presence of cycloheximide during the induction period blocked the formation of stress proteins in the cells exposed to Zn or ME, but not in those exposed to heat shock or IAA.Therefore, stress protein seems to be induced either by denaturation of pre-existing mature proteins (e.g., heat shock or IAA) or by newly synthesized abnormal proteins(e.g., Zn or ME). In conclusion, it is ilkely that the production of abnormal proteins by stresses triggers stress protein induction. In addition, it was found that the cells exposed to IISP and GRP inducers simultaneously responded to more strong stress among several stresses encountered.

  • PDF

Reaction Mechanism of Purine Nucleoside Phosphorylase and Effects of Reactive Agents for SH Group on the Enzyme in Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 얻은 Purine Nucleoside Phosphorylase의 반응기작과 효소에 대한 Sulfhydryl Reagent의 영향)

  • Choi, Hye-Seon
    • Korean Journal of Microbiology
    • /
    • v.32 no.3
    • /
    • pp.222-231
    • /
    • 1994
  • Kinetic analysis was done to elucidate the reaction mechanism of purine nucleoside phosphorylase (PNP) in Saccharomyces cerevisiae. The binary complexes of PNP${\cdot}$phosphate and PNP${\cdot}$ribose 1-phosphate were involved in the reaction mechanism. The initial velocity and product inhibition studies demonstrated were consistent with the predominant mechanism of the reaction being an ordered bi, bi reaction. The phosphate bound to the enzyme first, followed by nucleoside and base were the first product to leave, followed by ribose 1-phosphate. The kinetically suggested mechanism of PNP in S. cerevisiae was in agreement with the results of protection studies against the inactivation of the enzyme by sulfhydryl reagents, p-chloromercuribenzoate (PCMB) and 5,5'-dithiobisnitrobenzoate (DTNB). PNP was protected by ribose 1-phosphate and phosphate, but not by nucleoside or base, supporting the reaction order of ordered bi, bi mechanism. PCMB or DTNB-inactivated PNP was totally reactivated by dithiothreitol (DTT) and the activity was returned to the level of 77% by 2-mercaptoethanol, indicating that inactivation was reversible. The kinetic behavior of the PCMB-inactivated enzyme had been changed with higher $K_m$ value of inosine and lower $V_m$, and was restored by DTT. Inactivation of enzyme by DTNB showed similar pattern of K sub(m) value with that by PCMB, but had not changed the $V_m$ value, significantly. Negative cooperativity was not found with PCMB or DTNB treated PNP at high concentration of phosphate.

  • PDF