• Title/Summary/Keyword: SH-SY5Y Cells

Search Result 188, Processing Time 0.03 seconds

Magnolol Attenuates Neuronal Cell Death Induced by Kynurenine Metabolite (키누레닌 대사산물에 의한 신경세포 손상에 대한 Magnolol의 보호효과에 대한 연구)

  • Lee, Chang-Uk;Lee, Hyun-Jung;Kim, Do-Hee;Jang, Yeong-Mi;Lee, Sang-Hyung;Jeong, Yoonh-Wa;Kim, Dae-Jin;Chung, Yoon-Hee;Kim, Kyung-Yong;Kim, Sung-Su;Lee, Won-Bok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.2
    • /
    • pp.145-150
    • /
    • 2009
  • This study investigated the protective roles and mechanism of magnolol, from the stem bark of Magnolia officinalis against potential neurotoxin 3-hydroxykynurenine (3-HK)-induced neuronal cell death. For the evaluation of protective role of magnolol, we examined cell viability, apoptotic nuclei, change of mitochondrial membrane potential and caspase activity in human neuroblastoma SH-SY5Y cells. It was found that 3-HK induces neuronal cell death in the human neuroblastoma SH-SY5Y cell line. The reduced cell viability produced characteristic features such as cell shrinkages, plasma membrane blebbing, chromatin condensation, and nuclear fragmentation. The cells treated with 3-HK showed an increase in the concentration of reactive oxygen species (ROS) as well as in caspase activity. In addition, both are involved in the 3-HK-induced apoptosis. Magnolol attenuated the cell viability reduction by 3-HK in both a dose- and time-dependent manner. Optical microscopy showed that magnolol inhibited the cell morphological features in the 3-HK-treated cells. Furthermore, the increase in the ROS concentration and the caspase activities by 3-HK were also attenuated by magnolol. These results showed that magnolol has a protective effect on the 3-HK induced cell death by inhibiting ROS production and caspase activity.

L-histidine and L-carnosine exert anti-brain aging effects in D-galactose-induced aged neuronal cells

  • Kim, Yerin;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.14 no.3
    • /
    • pp.188-202
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Brain aging is a major risk factor for severe neurodegenerative diseases. Conversely, L-histidine and L-carnosine are known to exhibit neuroprotective effects. The aim of this study was to examine the potential for L-histidine, L-carnosine, and their combination to mediate anti-brain aging effects in neuronal cells subjected to D-galactose-induced aging. MATERIALS/METHODS: The neuroprotective potential of L-histidine, L-carnosine, and their combination was examined in a retinoic acid-induced neuronal differentiated SH-SY5Y cell line exposed to D-galactose (200 mM) for 48 h. Neuronal cell proliferation, differentiation, and expression of anti-oxidant enzymes and apoptosis markers were subsequently evaluated. RESULTS: Treatment with L-histidine (1 mM), L-carnosine (10 mM), or both for 48 h efficiently improved the proliferation, neurogenesis, and senescence of D-galactose-treated SH-SY5Y cells. In addition, protein expression levels of both neuronal markers (β tubulin-III and neurofilament heavy protein) and anti-oxidant enzymes, glutathione peroxidase-1 and superoxide dismutase-1 were up-regulated. Conversely, protein expression levels of amyloid β (1-42) and cleaved caspase-3 were down-regulated. Levels of mRNA for the pro-inflammatory cytokines, interleukin (IL)-8, IL-1β, and tumor necrosis factor-α were also down-regulated. CONCLUSIONS: To the best of our knowledge, we provide the first evidence that L-histidine, L-carnosine, and their combination mediate anti-aging effects in a neuronal cell line subjected to D-galactose-induced aging. These results suggest the potential benefits of L-histidine and L-carnosine as anti-brain aging agents and they support further research of these amino acid molecules.

Neuroprotective Effect of Chebulagic Acid via Autophagy Induction in SH-SY5Y Cells

  • Kim, Hee Ju;Kim, Joonki;Kang, Ki Sung;Lee, Keun Taik;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.275-281
    • /
    • 2014
  • Autophagy is a series of catabolic process mediating the bulk degradation of intracellular proteins and organelles through formation of a double-membrane vesicle, known as an autophagosome, and fusing with lysosome. Autophagy plays an important role of death-survival decisions in neuronal cells, which may influence to several neurodegenerative disorders including Parkinson's disease. Chebulagic acid, the major constituent of Terminalia chebula and Phyllanthus emblica, is a benzopyran tannin compound with various kinds of beneficial effects. This study was performed to investigate the autophagy enhancing effect of chebulagic acid on human neuroblastoma SH-SY5Y cell lines. We determined the effect of chebulagic acid on expression levels of autophagosome marker proteins such as, DOR/TP53INP2, Golgi-associated ATPase Enhancer of 16 kDa (GATE 16) and Light chain 3 II (LC3 II), as well as those of its upstream pathway proteins, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and Beclin-1. All of those proteins were modulated by chebulagic acid treatment in a way of enhancing the autophagy. Additionally in our study, chebulagic acid also showed a protective effect against 1-methyl-4-phenylpyridinium ($MPP^+$) - induced cytotoxicity which mimics the pathological symptom of Parkinson's disease. This effect seems partially mediated by enhanced autophagy which increased the degradation of aggregated or misfolded proteins from cells. This study suggests that chebulagic acid is an attractive candidate as an autophagy-enhancing agent and therefore, it may provide a promising strategy to prevent or cure the diseases caused by accumulation of abnormal proteins including Parkinson's disease.

Direct Involvement of G Protein $\alpha_{q/11}$ Subunit in Regulation of Muscarinic Receptor-Mediated sAPP$\alpha$ Release

  • Kim Jin Hyoung;Kim Hwa-Jung
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1275-1281
    • /
    • 2005
  • The $G_{q/11}$ protein-coupled receptors, such as muscarinic (M1 & M3) receptors, have been shown to regulate the release of a soluble amyloid precursor protein (sAPP$\alpha$) produced from $\alpha$-secretase processing. However, there is no direct evidence for the precise characteristics of G proteins, and the signaling mechanism for the regulation of $G_{q/11}$ protein-coupled receptor mediated sAPP$\alpha$ release is not clearly understood. This study examined whether the muscarinic receptor-mediated release of sAPP$\alpha$ is directly regulated by $G\alpha_{q/11}$ proteins. The HEK293 cells were transiently cotransfected with muscarinic M3 receptors and a dominant-negative minigene construct of the G protein $\alpha$ subunit. The sAPP$\alpha$ release in the media was measured using an antibody specific for sAPP. The sAPP$\alpha$ release enhancement induced by muscarinic receptor stimulation was decreased by a $G_{q/11}$ minigene construct, whereas it was not blocked by a control minigene construct (the G$\alpha$ carboxy peptide in random order, G$\alpha_{q}$R) or $G\alpha_{j}$ constructs. This indicated a direct role of the $G\alpha_{q/11}$ protein in the regulation of muscarinic M3 receptor-mediated sAPP$\alpha$ release. We also investigated whether the transactivation of the epidermal growth factor receptor (EGFR) by a muscarinic agonist could regulate the sAPP$\alpha$ release in SH-SY5Y cells. Pretreatment of a specific EGFR kinase inhibitor, tyrophostin AG1478 (250 nM), blocked the EGF-stimulated sAPP$\alpha$ release, but did not block the oxoM­stimulated sAPP$\alpha$ release. This demonstrated that the transactivation of the EGFR by muscarinic receptor activation was not involved in the muscarinic receptor-mediated sAPP$\alpha$ release.

Neuroprotective Effects of Schisandra chinensis and Ribes fasciculatum Extract on Hydrogen Peroxide-Mediated Oxidative Stress in Neuroblastic SH-SY5Y Cell Line (과산화수소로 유도된 SH-SY5Y 신경세포 사멸에 대한 오미자·칠해목 추출혼합물의 보호효과)

  • Park, Eun-kuk;Han, Kyung-Hoon;Lee, Seung-Hee;Kim, Nam-Ki;Bae, Mun-Hyoung;Seo, Young-Ha;Yong, Yoon-joong;Jeong, Seon-Yong;Choi, Chun-Whan
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.6
    • /
    • pp.865-872
    • /
    • 2018
  • In neuronal cell deaths, oxidative stress is normally implicated with a most of these deaths occurring in neurodegenerative disorders such as the Alzheimer's and Parkinson's diseases. In this study, the neuroprotective effects of Schisandra chinensis (SC) and Ribes fasciculatum (RF) extracts on hydrogen peroxide ($H_2O_2$)-induced oxidative stress in neuroblastic cell line were investigated. For an hour, hydrogen peroxide of $100{\mu}M$ concentration, was induced on neuroblastic cells, causing apoptic cell death. For the neuroprotection, a sample of neuroblastic cells had been pre-treated with SC and RF extracts for 24 hours before application of the hydrogen peroxide. No neurotoxic effects were observed in the cells that had been treated by SC and RF. This prove that the treatment of SC and RF extract prevented apoptotic cell death of neuroblastic cell line exposed to oxidative injury. In addition, applying both SC and RF extracts at a 7:3 ratio increased the neuronal cell survival rate, compared to individual treatments of SC and RF extract. This study suggests that SC and RF extracts may be potential therapeutic agents for the prevention of neuronal cell death.

Effects of Corticosterone on Beta-Amyloid-Induced Cell Death in SH-SY5Y Cells

  • Bo Kyeong Do;Jung-Hee Jang;Gyu Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.77-83
    • /
    • 2024
  • Alzheimer's disease (AD) is a neurodegenerative disease characterized by neuronal cell death and memory impairment. Corticosterone (CORT) is a glucocorticoid hormone produced by the hypothalamic-pituitary-adrenal axis in response to a stressful condition. Excessive stress and high CORT levels are known to cause neurotoxicity and aggravate various diseases, whereas mild stress and low CORT levels exert beneficial actions under pathophysiological conditions. However, the effects of mild stress on AD have not been clearly elucidated yet. In this study, the effects of low (3 and 30 nM) CORT concentration on Aβ25-35-induced neurotoxicity in SH-SY5Y cells and underlying molecular mechanisms have been investigated. Cytotoxicity caused by Aβ25-35 was significantly inhibited by the low concentration of CORT treatment in the cells. Furthermore, CORT pretreatment significantly reduced Aβ25-35-mediated pro-apoptotic signals, such as increased Bim/Bcl-2 ratio and caspase-3 cleavage. Moreover, low concentration of CORT treatment inhibited the Aβ25-35-induced cyclooxygenase-2 and pro-inflammatory cytokine expressions, including tumor necrosis factor-α and interleukin-1β. Aβ25-35 resulted in intracellular accumulation of reactive oxygen species and lipid peroxidation, which were effectively reduced by the low CORT concentration. As a molecular mechanism, low CORT concentration activated the nuclear factor-erythroid 2-related factor 2, a redox-sensitive transcription factor mediating cellular defense and upregulating the expression of antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase, glutamylcysteine synthetase, and manganese superoxide dismutase. These findings suggest that low CORT concentration exerts protective actions against Aβ25-35-induced neurotoxicity and might be used to treat and/or prevent AD.

Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide

  • Lee, Ah Young;Choi, Ji Myung;Lee, Myoung Hee;Lee, Jaemin;Lee, Sanghyun;Cho, Eun Ju
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide $(H_2O_2)$-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS: The SH-SY5Y human neuroblastoma cells exposed to $250{\mu}M$ $H_2O_2$ for 24 h were treated with different concentrations of PO (25, 125, 250 and $500{\mu}g/mL$) and its major fatty acid, ALA (1, 2.5, 5 and $25{\mu}g/mL$). We examined the effects of PO and ALA on $H_2O_2$-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS: Treatment of $H_2O_2$ resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the $H_2O_2$-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the $H_2O_2$-induced up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS: PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by $H_2O_2$. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.

Transcriptional Profile and Cellular Effects on Treatment of Methylmercury Using Human Cdna Microarray

  • Kim, Youn-Jung;Yun, Hye-Jung;Jeon, Hee-Kyung;Chai, Young-Gyu;Ryu, Jae-Chun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.129-129
    • /
    • 2003
  • Methylmercury is known to have devastating effects on the mammalian nervous system. When human neuroblastoma SH-SY5Y cells were treated with MeHg at sublethal concentrations (6.25 uM), up-regulated genes (39) & Down-regulated genes (19) were identified by microarray.(omitted)

  • PDF

Anti-cancer Effects of Palbohoichoon-tang on Neuroblastoma Cells (신경아세포종에 대한 팔보회춘탕(八寶廻春湯)의 항암 효과)

  • An, Jung-Hwan;Cho, Mun-Young;Woo, Chan;Shin, Yong-Jin;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.79-91
    • /
    • 2014
  • Objectives : To investigate the anti-cancer effect of Palbohoichoon-tang (PBHCT) extracts. Methods : The cell viability was assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MMT) assay and cell morphological changes were microscopically analyzed after staining with $10{\mu}M$ 2-[4-amidinophenyl]-6-indolecarbamidine dihydrochloride (DAPI) and TUNEL. We also analyzed expression of Bcl2, $Bcl_{xL}$, Bax, procaspase-3, procaspase-9, and procyclic acidic repetitive protein (PARP) by western blot method. Results : Observations showed that PBHCT induced the apoptotic cell death proved by increased sub-G1 phase cell population, apoptotic body formation and chromatin condensation. Western blot analysis of total cell lysates revealed that the PBHCT induced cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase (PARP). In addition, PBHCT dose-dependently increased the activity of caspase-9, caspase-3 and PARP-1. Furthermore, PBHCT reduced anti-apoptotic Bcl2, $Bcl_{xL}$ expression which contributed to the loss of mitochondrial membrane potential and the activations of caspase-9 and caspase-3. Conclusions : These findings suggest that PBHCT exerts anti-cancer effects on human neuroblastoma SH-SY5Y cells by inducing apoptotic death via down-regulation of anti-apoptotic proteins such as Bcl2 and $Bcl_{xL}$, up-regulation of pro-apoptotic proteins such as Bax, and activation of caspase cascades and PARP-1.