• 제목/요약/키워드: SGS

검색결과 198건 처리시간 0.024초

4개월간 한방치료를 받은 전이성 담낭암 환자 증례 (A Case of Advanced Metastatic Gallbladder Cancer Patients Treated with Oriental Medicine for Four Months)

  • 전형준;조종관;이연월;유화승
    • 대한한방내과학회지
    • /
    • 제33권3호
    • /
    • pp.338-346
    • /
    • 2012
  • Objectives : To observe the therapeutic effects of Oriental herbal prescriptions on an advanced metastatic gallbladder cancer patient. Methods : Hang-Am-Plus (HAP), Gun-Chil-Gye-Bok-Jung (GGJ) and Se-Gan-San (SGS) were prescribed three times a day. To observe the therapeutic effects of oriental medical prescriptions, computed tomography (CT) and magnetic resonance imaging (MRI) images, tumor markers and laboratory tests were carried out regularly. Results : The levels of AST, ALT, ALP, ${\gamma}$-GTP, TB, DB, CA19-9, and CEA decreased significantly from November 29th 2011 to March 14th 2012. There was no interval change on CT images taken between November 15th 2011 and January 3rd 2012. Conclusions : In this case, it could be concluded that Oriental medicinal treatment might be considered as a palliative alternative therapy for the advanced metastatic gallbladder patient.

Computation of Turbulent Flows and Radiated Sound From Axial Compressor Cascade

  • Lee, Seungbae;Kim, Hooi-Joong;Kim, Jin-Hwa;Song, Seung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.272-285
    • /
    • 2004
  • The losses at off-design points from a compressor cascade occur due to the deviation from a design incidence angle at the inlet of the cascade. The self-noise from the blade cascade at off-design points comes from a separated boundary layer and vortex sheddings. If the incidence angle to the cascade increases, stalling in blades may occur and the noise level increases significantly. This study applied Large-Eddy Simulations (LES) using deductive and deductive dynamic SGS models to low Mach-number, turbulent flow with each incidence angle to the cascade ranging from -40$^{\circ}$ to +20$^{\circ}$ and compared numerical predictions with measured data. It was observed that the oscillating separation bubbles attached to the suction surface do not modify wake flows dynamically for cases of negative incidence angles. However, an incidence angle greater than 8$^{\circ}$ caused a separated vortex near the leading edge to be shed downstream and created stalling. The computed performance parameters such as drag coefficient and total pressure loss coefficient showed good agreement with experimental results. Noise from the cascade of the compressor is summarized as sound generated by a structure interacting with unsteady, turbulent flows. The hybrid method using acoustic analogy was observed to closely predict the measured overall sound powers and directivity patterns at design and off-design points of blade cascade.

VIC 방법을 사용한 2차원 날개의 LES 해석 (Large Eddy Simulation for a 2-D hydrofoil using VIC(Vortex-In-Cell) method)

  • 김명수;김유철;서정천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.407-413
    • /
    • 2011
  • VIC (Vortex-In-Cell) method for viscous incompressible flow is presented to simulate the wake behind a modified NACA16 foil. With uniform rectangular grid, the velocity in field is calculated using streamfunction from vorticity field by solving the Poisson equation in which FFT(Fast Fourier Transform) is combined with 2nd order finite difference scheme. Here, LES(Large Eddy Simulation) with Smagorinsky model is applied for turbulence calculation. Effective viscosity is formulated using magnitude of strain tensor(or vorticity). Then the turbulent diffusion as well as viscous diffusion becomes particle strength exchange(PSE) with averaged eddy viscosity. The well-established panel method is combined to obtain the irrotational velocity and to apply the no-penetration boundary condition on the body panel. And wall diffusion is used for no-slip condition numerical results of turbulent stresses are compared with experimental results (Bourgoyne, 2003). Before comparing process, LES(Large Eddy Simulation) SGS(Subgrid scale) stress is transformed Reynolds averaged stress (Winckelmans, 2001).

  • PDF

CMMI 성숙도 3단계 SG간 상호 연관성 분석을 통한 표준 프로세스 정의 생산성 향상 (Increasing Productivity of Defining Standard Processes based on the Analysis of Relationship among SGs in CMMI Maturity Level 3)

  • 이민재;류성열;박남직
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권12호
    • /
    • pp.936-941
    • /
    • 2010
  • CMMI는 전체 5개 성숙도 단계, 22개의 프로세스 영역이 있고, 각 프로세스 영역은 SG와 GG로 구성돼 있다. 프로세스 영역 간에는 상호 연관된 부분들이 많아 조직의 표준 프로세스를 정의할 때, 중복적인 내용이 반영되는 경우가 많다. 본 연구에서는 피어슨상관분석을 통해 CMMI 성숙도 3단계 프로세스 영역의 전체 528개 SG중, 총 60개(약 11%)가 연관성이 높음을 파악하고 이 연관성을 고려한 표준 프로세스 정의 방안을 제안하였다. 또한 제안한 방안에 따라 표준 프로세스를 정의한 결과, 기존의 접근 방법을 사용했을 때 보다 생산성이 25% 향상되는 성과를 보였다.

스테인레스 섬유를 충전제로 사용한 섬유강화 복합재료의 전자파 차폐 효과 (Electromagnetic Interference Shielding Effect of Fiber Reinforced Composites with Stainless Fiber Conductive Filler)

  • 한길영;송동한;안동규
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.71-78
    • /
    • 2010
  • The objective of this research is to investigate the influence of material characteristic and design on to the electromagnetic interference (EMI) shielding characteristics. Basalt glass fiber reinforced composite specimens with stainless fiber conductive filler were manufactured to perform the electromagnetic interference shielding effectiveness(SE) experiments. In order to reflection and absorb the specimen in electromagnetic fields, flanged coaxial transmission line sample holder was fabricated according to ASTM D 4935-89. Electromagnetic shielding effectiveness(EMSE) was measured quantitatively to examine the electromagnetic shielding characteristics of designed specimens. The result of EMI shielding experiments showed that maximum EMSE value of sandwich type specimens with GSG(basalt glass fiber/stainless fiber/basalt glass fiber) and SGS(stainless fiber/basalt glass fiber/stainless fiber) were 65dB and 80dB at a frequency of 1,500MHz, respectively.

Verification Test and Model Updating for a Nuclear Fuel Rod with Its Supporting Structure

  • H. S. Kang;K. N. Song;Kim, H. K.;K. H. Yoon;Y. H. Jung
    • Nuclear Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.73-82
    • /
    • 2001
  • Pressurized water reactor(PWR) fuel rods. which are continuously supported by a spring system called a spacer grid(SG), are exposed to reactor coolant at a flow velocity of up to 6-8 m/s. It is known that the vibration of 3 fuel rod is generated by the coolant flow, a so-called flow-induced-vibration(FIV), and the relative motion induced by the FIV between the fuel rod and the SG can wear away the surface of the fuel rod, which occasionally leads to its fretting failure. It is, therefore, important to understand the vibration characteristics of the fuel rod and reflect that in its design. In this paper, vibration analyses of the fuel rod with two different SGs were performed using both analytical and experimental methods. Updating of the finite element(FE) model using the measured data was performed in order to enhance confidence in the FE model of fuel rods supported by an SG. It was found that the modal parameters are very sensitive to the spring constant of the SG.

  • PDF

병렬화된 Chimera 격자 기법을 이용한 다단 로켓의 단분리 운동 해석 (Numerical Analysis on Separation Dynamics of Multi-stage Rocket System Using Parallelized Chimera Grid Scheme)

  • 고순흠;최성진;김종암;노오현;박정주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.47-52
    • /
    • 2002
  • The supersonic flow around multi-stage rocket system is analyzed using 3-D compressible unsteady flow solver. A Chimera overset grid technique is used for the calculation of present configuration and grid around the core rocket is composed of 3 zones to represent fins in the core rocket. Flow solver is parallelized to reduce the computation time, and an efficient parallelization algorithm for Chimera grid technique is proposed. AUSMPW+ scheme is used for the spatial discretization and LU-SGS for the time integration. The flow field around multi-stage rocket was analyzed using this developed solver, and the results were compared with that of a sequential solver The speed-up ratio and the efficiency were measured in several processors. As a result, the computing speed with 12 processors was about 10 times faster than that of a sequential solver. Developed flow solver is used to predict the trajectory of booster in separation stage. From the analyses, booster collides against core rocket in free separation case. So, additional jettisoning forces and moments needed for a safe separation are examined.

  • PDF

INTEGRAL EFFECT TESTS IN THE PKL FACILITY WITH INTERNATIONAL PARTICIPATION

  • Umminger, Klaus;Mull, Thomas;Brand, Bernhard
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.765-774
    • /
    • 2009
  • For over 30 years, investigations of the thermohydraulic behavior of pressurized-water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany. The PKL facility models the entire primary side and significant parts of the secondary side of a of pressurized water reactor at a height scale of 1:1. Volumes, power ratings and mass flows are scaled with a ratio of 1:145. The experimental facility consists of four primary loops with circulation pumps and steam generators (SGs) arranged symmetrically around the reactor pressure vessel (RPV). The investigations carried out encompass a very broad spectrum from accident scenario simulations with large, medium, and small breaks, over the investigation of shutdown procedures after a wide variety of accidents, to the systematic investigation of complex thermohydraulic phenomena. The PKL tests began in the mid 1970s with the support of the German Research Ministry. Since the mid 1980s, the project has also been significantly supported by the German PWR operators. Since 2001, 25 partner organizations from 15 countries have taken part in the PKL investigations with the support and mediation of the OECD/ NEA (Nuclear Energy Agency). After an overview of PKL history and a short description of the facility, this paper focuses on the investigations carried out since the beginning of the international cooperation, and shows, by means of some examples, what insights can be derived from the tests.

Using SG Arrays for Hydrology in Comparison with GRACE Satellite Data, with Extension to Seismic and Volcanic Hazards

  • Crossley David;Hinderer Jacques
    • 대한원격탐사학회지
    • /
    • 제21권1호
    • /
    • pp.31-49
    • /
    • 2005
  • We first review some history of the Global Geodynamics Project (GGP), particularly in the progress of ground-satellite gravity comparisons. The GGP Satellite Project has involved the measurement of ground-based superconducting gravimeters (SGs) in Europe for several years and we make quantitative comparisons with the latest satellite GRACE data and hydrological models. The primary goal is to recover information about seasonal hydrology cycles, and we find a good correlation at the microgal level between the data and modeling. One interesting feature of the data is low soil moisture resulting from the European heat wave in 2003. An issue with the ground-based stations is the possibility of mass variations in the soil above a station, and particularly for underground stations these have to be modeled precisely. Based on this work with a regional array, we estimate the effectiveness of future SG arrays to measure co-seismic deformation and silent-slip events. Finally we consider gravity surveys in volcanic areas, and predict the accuracy in modeling subsurface density variations over time periods from months to years.

Investigation on reverse flow characteristics in U-tubes under two-phase natural circulation

  • Chu, Xi;Li, Mingrui;Chen, Wenzhen;Hao, Jianli
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.889-896
    • /
    • 2020
  • The vertically inverted U-tube steam generator (UTSG) is widely used in the pressurized water reactor (PWR). The reverse flow behavior generally exists in some U-tubes of a steam generator (SG) under both single- and two-phase natural circulations (NCs). The behavior increases the flow resistance in the primary loop and reduces the heat transfer in the SG. As a consequence, the NC ability as well as the inherent safety of nuclear reactors is faced with severe challenges. The theoretical models for calculating single- and two-phase flow pressure drops in U-tubes are developed and validated in this paper. The two-phase reverse flow characteristics in two types of SGs are investigated base on the theoretical models, and the effects of the U-tube height, bending radius, inlet steam quality and primary side pressure on the behavior are analyzed. The conclusions may provide some promising references for SG optimization to reduce the disadvantageous behavior. It is also of significance to improve the NC ability and ensure the PWR safety during some accidents.