• 제목/요약/키워드: SGC-7901 cells

검색결과 31건 처리시간 0.024초

Ethanol but not Aqueous Extracts of Tubers of Sauromatum Giganteum(Engl.) Cusimano and Hett Inhibit Cancer Cell Proliferation

  • Gao, Shi-Yong;Li, Jun;Wang, Long;Sun, Qiu-Jia;Gong, Yun-Fei;Gang, Jian;Su, Yi-Jun;Ji, Yu-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10613-10619
    • /
    • 2015
  • Background: Both alcohol and aqueous extracts of Sauromatum giganteum(Engl.) Cusimano and Hett, the dried root tuber of which is named Baifuzi in Chinese, have been used for folklore treatment of cancer in Northeast of China. However, little is known about which is most suitable to the cancer therapy. Materials and Methods: Serum pharmacology and MTT assays were adopted to detect the effects of ethanol and aqueous extracts of Sauromatum giganteum(Engl.) Cusimano and Hett, prepared by heat reflux methods, on proliferation of different cancer cells. Results: Cancer cells treated with medium supplemented with 10%, 20%, 40% serum(v/v) containing ethanol extract had a decline in viability, with inhibition rates of 7.69%, 21.8%, 41.9% in MCF-7 cells, 42.8%, 48.1%, 51.8% in SGC-7901 cells, 44.1%, 49.2%, 53.7% in SMMC-7721 cells, 6.8%, 15.2%, 39.8% in HepG2 cells, 7.57%, 16.3%, 36.2% in HeLa cells, 6.24%, 12.5%, 27.4% in A549 cells, and 7.20%, 17.5%, 31.3% in MDA-MB-231 cells, respectively. Viability in the aqueous extract groups was no different with that of controls. Conclusions: An ethanol extract of Sauromatum giganteum(Engl.) Cusimano and Hett inhibited the proliferation of SMMC-7721, SGC-7901 and MCF-7 cells, which supports the use of alcoholic but not aqueous extracts for control of sensive cancers, which might include hepatocarcinoma, gastric cancer and breast cancer.

Knockdown of MDR1 Increases the Sensitivity to Adriamycin in Drug Resistant Gastric Cancer Cells

  • Zhu, Chun-Yu;Lv, Yan-Ping;Yan, Deng-Feng;Gao, Fu-Lian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6757-6760
    • /
    • 2013
  • Gastric cancer is one of the most frequently occurring malignancies in the world. Development of multiple drug resistance (MDR) to chemotherapy is known as the major cause of treatment failure for gastric cancer. Multiple drug resistance 1/P-glycoprotein (MDR1/p-gp) contributes to drug resistance via ATP-dependent drug efflux pumps and is overexpressed in many solid tumors including gastric cancer. To investigate the role of MDR1 knockdown on drug resistance reversal, we knocked down MDR1 expression using shRNA in drug resistant gastric cancer cells and examined the consequences with regard to adriamycin (ADR) accumulation and drug-sensitivity. Two shRNAs efficiently inhibited mRNA and protein expression of MDR1 in SGC7901-MDR1 cells. MDR1 knockdown obviously decreased the ADR accumulation in cells and increased the sensitivity to ADR treatment. Together, our results revealed a crucial role of MDR1 in drug resistance and confirmed that MDR1 knockdown could reverse this phenotype in gastric cancer cells.

Effects of MicroRNA-106 on Proliferation of Gastric Cancer Cell through Regulating p21 and E2F5

  • Yao, Yong-Liang;Wu, Xiao-Yang;Wu, Jian-Hong;Gu, Tao;Chen, Ling;Gu, Jin-Hua;Liu, Yun;Zhang, Qing-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2839-2843
    • /
    • 2013
  • Objective: To investigate the effects of miR-106b on malignant characteristics of gastric cancer cells, and explore possible mechanisms. Methods: Expression of miR-106b, p21 and E2F was determined by real-time PCR. Transfection with miR-106b mimics was conducted, and gastric cancer cells with miR-106b overexpression were obtained. Cells transfected with mimic mutants and those without transfection served as negative and blank controls, respectively. Flow cytometry and transwell assays were adopted to detect the effects of miR-106b overexpression on cell cycle, migration and invasion of gastric cancer cells. Results:. The expression of miR- 106b in gastric cancer cells was significantly higher than that in normal gastric mucosa cells. Furthermore, the expression level of miR-106b rose according to the degree of malignacy among the three GC cell strains (MKN- 45 > SGC-7901 > MKN-28). Overexpression of miR-106b shortened the G0/G1 phase and accelerated cell cycle progression, while reducing p21 and E2F5, without any significant effects on the capacity for migration and invasion of gastric cancer cells. Conclusions: miR-106b may promote cell cycling of gastric cancer cells through regulation of p21 and E2F5 target gene expression.

Preparation of 5-fluorouracil-loaded Nanoparticles and Study of Interaction with Gastric Cancer Cells

  • Fan, Yu-Ling;Fan, Bing-Yu;Li, Qiang;Di, Hai-Xiao;Meng, Xiang-Yu;Ling, Na
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7611-7615
    • /
    • 2014
  • Aims: To prepare 5-fluorouracil (5-Fu) nanoparticles with higher encapsulation efficiency and drug loading, and then investigate interaction with the SGC-7901 gastric cancer cell line. Materials and Methods: Prescription was optimized by orthogonal experiments, the encapsulation efficiency and loading capacity were tested by high-performance liquid chromatography, and inhibition of proliferation by 5-Fu nanoparticles and 5-Fu given to cells for 24, 48 and 72 hours was investigated by methyl thiazolyl tetrazolium assay (MTT). In addition, 5-Fu nanoparticles were labeled by fluorescein isothiocyanate (FITC), and absorption into cells was tested by flow cytometry. Results: The optimal conditions for preparation were concentrations of 5-Fu of 5mg/ml, of $CaCl_2$ of 60 mg/ml and of chitosan of 2 mg/ml. With a stirring speed of 1200rpm, encapsulation efficiency of 5-Fu nanoparticles was $55.4{\pm}1.10%$ and loading capacity was $4.22{\pm}0.14%$; gastric cancer cells were significantly inhibited by 5-Fu nanoparticles in a time and concentration dependent manner, and compared to 5-Fu with slower drug release, in a certain concentration range, inhibition with 5-Fu nanoparticles was stronger. 5-Fu nanoparticles were absorbed by the cells in line with the concentration. Conclusions: 5-Fu nanoparticles can inhibit growth of gastric cancer cells in vitro to a greater extent than with 5-Fu with good adsorption characteristics, supporting feasibility as a carrier.

Effects of Multiple-target Anti-microRNA Antisense Oligodeoxyribonucleotides on Proliferation and Migration of Gastric Cancer Cells

  • Xu, Ling;Dai, Wei-Qi;Xu, Xuan-Fu;Wang, Fan;He, Lei;Guo, Chuan-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3203-3207
    • /
    • 2012
  • Backgrounds: To investigate the inhibiting effects of multi-target anti-microRNA antisense oligonucleotide (MTg-AMOs) on proliferation and migration of human gastric cancer cells. Methods: Single anti-microRNA antisense oligonucleotides (AMOs) and MTg-AMOs for miR-221, 21, and 106a were designed and transfected into SGC7901, a gastric cancer cell line, to target the activity of these miRNAs. Their expression was analyzed using stem-loop RT-PCR and effects of MTg-AMOs on human gastric cancer cells were determined using the following two assay methods: CCK8 for cell proliferation and transwells for migration. Results: In the CCK-8 cell proliferation assay, $0.6{\mu}mol/L$ was selected as the preferred concentration of MTg-AMOs and incubation time was 72 hours. Under these experimental conditions, MTg-AMOs demonstrated better suppression of the expression of miR-221, miR-106a, miR-21 in gastric cancer cells than that of single AMOs (P = 0.014, 0.024; 0.038, respectively). Migration activity was also clearly decreased as compared to those in randomized and blank control groups ($28{\pm}4$ Vs $54{\pm}3$, P <0.01; $28{\pm}4$ Vs $59{\pm}4$, P < 0.01). Conclusions: MTg-AMOs can specifically inhibit the expression of multiple miRNAs, and effectively antagonize proliferation and migration of gastric cancer cells promoted by oncomirs.

Antitumor Activity of Chloroquine in Combination with Cisplatin in Human Gastric Cancer Xenografts

  • Zhang, Hui-Qing;Fang, Nian;Liu, Xiao-Mei;Xiong, Shu-Ping;Liao, Yu-Qian;Jin, Wen-Jian;Song, Rong-Feng;Wan, Yi-Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3907-3912
    • /
    • 2015
  • Purpose: To investigate the antitumor activity and mechanism of chloroquine (CQ) in combination with cisplatin (DDP) in nude mice xenografted with gastric cancer SGC7901 cells. Materials and Methods: 35 cases of gastric cancer patients with malignant ascites were enrolled and intraperitoneal cisplatin injection was performed. Ascites were collected before and 5 days after perfusion for assessment of autophagy levels in cancer cells. In addition, 24 tumor-bearing mice were randomly divided into control, DDP, CQ and CQ + DDP groups. Results: In 54.3% (19/35) of patients the treatment was therapeutically effective (OR), 5 days after peritoneal chemotherapy, 13 patients had the decreased ascites Beclin-1 mRNA levels. In 16 patients who had NR, only 2 cases had decreased Beclin-1 (P=0.001). Compared with the control group, the xenograft growth in nude mice in the DDP group was low, and the inhibition rate was 47.6%. In combination with chloroquine, the inhibition rate increased to 84.7% (P<0.01). The LC3-II/I ratio, and Beclin1 and MDR1/P-gp expression were decreased, while caspase 3 protein levels increased (P<0.05). Conclusions: Antitumor ability of cisplatin was associated with autophagy activity and chloroquine can enhance chemosensitivity to cisplatin in gastric cancer xenografts nude mice.

Golgi Phosphoprotein 2 Down-regulates the Th1 Response in Human Gastric Cancer Cells by Suppressing IL-12A

  • Tang, Qing-Feng;Ji, Qing;Tang, Yu;Hu, Song-Jiao;Bao, Yi-Jie;Peng, Wen;Yin, Pei-Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5747-5751
    • /
    • 2013
  • Golgi phosphoprotein 2 (GOLPH2) is a very important biomarker in a variety of diseases. Its biological function is not clear, particularly in gastric cancer. To investigate the role of GOLPH2 in human gastric cancer, and determine its effect on the Th1 lymphocyte response, its expression and that of IL-12A were measured by real-time PCR and immunohistochemistry. The relationship between GOLPH2 and IL-12A was analysed statistically. The effect of GOLPH2 on the Th1 lymphocyte response was investigated with an in vitro co-culture system. The results showed that in human gastric cancer, the expression of GOLPH2 was significantly higher and the expression of IL-12A was lower than in normal gastric mucosal tissues, and the expression levels of GOLPH2 and IL-12A were negatively correlated. In addition, obvious down-regulation of the Th1 response was observed when lymphocytes were co-cultured with gastric cancer SGC7901 cells over-expressing GOLPH2. GOLPH2 down-regulated the expression of IL-12A, and inhibited the expression of TNF-${\alpha}$ and IFN-${\gamma}$. The results indicated that GOLPH2 down-regulates the Th1 response via suppression of IL-12A in human gastric cancer, and this might provide a target for the prevention and treatment.

Potent Anticancer Effects of Lentivirus Encoding a Drosophila Melanogaster Deoxyribonucleoside Kinase Mutant Combined with Brivudine

  • Zhang, Nian-Qu;Zhao, Lei;Ma, Shuai;Gu, Ming;Zheng, Xin-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2121-2127
    • /
    • 2012
  • Objective: Deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) mutants have been reported to exert suicide gene effects in combined gene/chemotherapy of cancer. Here, we aimed to further evaluate the capacity of the mutanted enzyme and its potential for inhibiting cancer cell growth. Methods: We altered the sequence of the last 10 amino acids of Dm-dNK to perform site-directed mutagenesis and constructed active site mutanted Dm-dNK (Dm-dNKmut), RT-PCR and western bloting studies were used to reveal the expression of lentivirus mediated Dm-dNKmut in a breast cancer cell line (Bcap37), a gastric cancer cell line (SGC7901) and a colorectal cancer cell line (CCL187). [3H]-labeled substrates were used for enzyme activity assays, cell cytotoxicity was assessed by MTT assays, cell proliferation using a hemocytometer and apoptosis induction by thenannexin-V-FITC labeled FACS method. In vivo, an animal study was set out in which BALB/C nude mice bearing tumors were treated with lentivirus mediated expression of Dm-dNKmut with the pyrimidine nucleoside analog brivudine (BVDU, (E)-5-(2-bromovinyl)-(2-deoxyuridine). Results: The Dm-dNKmut could be stably expressed in the cancer cell lines and retained its enzymatic activity. Moreover, the cells expressing Dm-dNKmut exhibited increased sensitivity in combination with BVDU, with induction of apoptosis in vitro and in vivo. Conclusion: These findings underlined the importance of BVDU phosphorylated by Dm-dNKmut in transduced cancer cells and the potential role of Dm-dNKmut as a suicide gene, thus providing the basis for future intensive research for cancer therapy.

Inhibition of Tumor Growth in Vitro by a Combination of Extracts from Rosa Roxburghii Tratt and Fagopyrum Cymosum

  • Liu, Wei;Li, Su-Yi;Huang, Xin-En;Cui, Jiu-Jie;Zhao, Ting;Zhang, Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2409-2414
    • /
    • 2012
  • Objective: Traditional Chinese herbal medicines have a very long history. Rosa roxburghii Tratt and Fagopyrum cymosum are two examples of plants which are reputed to have benefits in improving immune responses, enhancing digestive ability and demonstrating anti-aging effects. Some evidence indicates that herbal medicine soups containing extracts from the two in combination have efficacy in treating malignant tumors. However, the underlying mechanisms are far from well understood. The present study was therefore undertaken to evaluate anticancer effects and explore molecular mechanisms in vitro. Methods: Proliferation and apoptosis were assessed with three carcinoma cell lines (human esophageal squamous carcinoma CaEs-17, human gastric carcinoma SGC-7901 and pulmonary carcinoma A549) by MTT assay and flow cytometry, respectively, after exposure to extract from Rosa roxburghii Tratt (CL) and extract from Fagopyrum cymosum (FR). $IC_{30}$ of CL and FR were obtained by MTT assay. Tumor cells were divided into four groups : control with no exposure to CL or FR; CL with $IC_{30}$ CL; FR with $IC_{30}$ FR; CL+FR group with 1/2 ($IC_{30}$ CL + $IC_{30}$ FR). RT-PCR and Western blot analysis were used to detect the expression of Ki-67, Bax and Bcl-2 at mRNA and protein levels. Results: Compared with the CL or FR groups, the combination of CL+FR showed significant inhibition of cell growth and increase in apoptosis; the mRNA and protein expression levels of Ki-67 and Bcl-2 in CL+FR group were all greatly decreased, while the expression of Bax was markedly increased. Conclusions: These results indicate that the synergistic antitumor effects of combination of CL and FR are related to inhibition of proliferation and induction of apoptosis.

Alkaloids from Beach Spider Lily (Hymenocallis littoralis) Induce Apoptosis of HepG-2 Cells by the Fas-signaling Pathway

  • Ji, Yu-Bin;Chen, Ning;Zhu, Hong-Wei;Ling, Na;Li, Wen-Lan;Song, Dong-Xue;Gao, Shi-Yong;Zhang, Wang-Cheng;Ma, Nan-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9319-9325
    • /
    • 2014
  • Alkaloids are the most extensively featured compounds of natural anti-tumor herbs, which have attracted much attention in pharmaceutical research. In our previous studies, a mixture of major three alkaloid components (5, 6-dihydrobicolorine, 7-deoxy-trans-dihydronarciclasine, littoraline) from Hymenocallis littoralis were extracted, analyzed and designated as AHL. In this paper, AHL extracts were added to human liver hepatocellular cells HepG-2, human gastric cancer cell SGC-7901, human breast adenocarcinoma cell MCF-7 and human umbilical vein endothelial cell EVC-304, to screen one or more AHL-sensitive tumor cell. Among these cells, HepG-2 was the most sensitive to AHL treatment, a very low dose ($0.8{\mu}g/ml$) significantly inhibiting proliferation. The non-tumor cell EVC-304, however, was not apparently affected. Effect of AHL on HepG-2 cells was then explored. We found that the AHL could cause HepG-2 cycle arrest at G2/M checkpoint, induce apoptosis, and interrupt polymerization of microtubules. In addition, expression of two cell cycle-regulated proteins, CyclinB1 and CDK1, was up-regulated upon AHL treatment. Up-regulation of the Fas, Fas ligand, Caspase-8 and Caspase-3 was observed as well, which might imply roles for the Fas/FsaL signaling pathway in the AHL-induced apoptosis of HepG-2 cells.