• 제목/요약/키워드: SGC-7901 cell

검색결과 33건 처리시간 0.024초

Tanshinone IIA Reverses the Malignant Phenotype of SGC7901 Gastric Cancer Cells

  • Xu, Min;Cao, Fa-Le;Li, Nai-Yi;Liu, Yong-Qiang;Li, Yan-Peng;Lv, Chun-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.173-177
    • /
    • 2013
  • Backgrounds: Tanshinone IIA (TIIA), a phenanthrenequinone derivative extracted from Salvia miltiorrhiza BUNGE, has been reported to be a natural anti-cancer agent in a variety of tumor cells. However, the effect of TIIA on gastric cancer cells remains unknown. In the present study, we investigated the influence of TIIA on the malignant phenotype of SGC7901 gastric cancer cells. Methods: Cells cultured in vitro were treated with TIIA (0, 1, 5, $10{\mu}g/ml$) and after incubation for different periods, cell proliferation was measured by MTT method and cell apoptosis and cell cycling were assessed by flow cytometry (FCM). The sensitivity of SGC7901 gastric cancer cells to anticancer chemotherapy was investigated with the MTT method, while cell migration and invasion were examined by wound-healing and transwell assays, respectively. Results: TIIA (1, 5, $10{\mu}g/ml$) exerted powerful inhibitory effects on cell proliferation (P < 0.05, and P < 0.01), and this effect was time- and dose-dependent. FCM results showed that TIIA induced apoptosis of SGC7901 cells, reduced the number of cells in S phase and increased those in G0/G1 phase. TIIA also significantly increased the sensitivity of SGC7901 gastric cancer cells to ADR and Fu. Moreover, wound-healing and transwell assays showed that TIIA markedly decreased migratory and invasive abilities of SGC7901 cells. Conclusions: TIIA can reverse the malignant phenotype of SGC7901 gastric cancer cells, indicating that it may be a promising therapeutic agent.

Induction of Cytotoxicity and Apoptosis in Human Gastric Cancer Cell SGC-7901 by Isovaltrate Acetoxyhydrin Isolated from Patrinia heterophylla Bunge Involves a Mitochondrial Pathway and G2/M Phase Cell Cycle Arrest

  • Yang, Bo;Wang, Yi-Qi;Cheng, Ru-Bin;Chen, Jia-Li;Chen, Jin;Jia, Li-Tao;Zhang, Ru-Song
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6481-6486
    • /
    • 2013
  • Background: Our previous study demonstrated cytotoxicity of a crude extract from Patrinia heterophylla Bunge (PHEB). In the present study, we aimed to investigate the effects of isovaltrate acetoxyhydrin (IA) isolated from PHEB on the gastric cancer cell SGC-7901, in order to explore a potential treatment for gastric cancer. Methods: MTT assays were employed to determine the effects of IA on cell vitality and proliferation, with monitoring of cell morphology changes and examination of apoptosis with Annexin V-PI staining. Flow cytometry was used to assess cell cycle progression and mitochondrial membrane potential. The activity of caspase 3, 9 was evaluated by spectrophotometry, and the protein levels of Bax, Bcl2 and Cyclin B1 were analyzed with Western blotting of total proteins extracted from cultured cells. Results: The results demonstrated direct toxicity of IA towards SGC-7901 cells. Evidence of apoptosis included blebbing and chromatin condensation. Annexin V-PI assays revealed early apoptosis, involving rapid depolarization of mitochondrial membranes and activity of caspase 3, 9 signaling pathways. Western blotting showed that Bcl2 and Bax proteins was down- and up-regulated, respectively, and cyclin B1 was up-regulated. Cell cycle analysis further indicated that IA could induce G2/M phase arrest in SGC-7901 cells. Conclusions: In conclusion, we believe that IA induces apoptosis of SGC-7901 cells, therefore providing a potential therapeutic agent for treatment of gastric cancer.

Downregulation of Cdk1 and CyclinB1 Expression Contributes to Oridonin-induced Cell Cycle Arrest at G2/M Phase and Growth Inhibition in SGC-7901 Gastric Cancer Cells

  • Gao, Shi-Yong;Li, Jun;Qu, Xiao-Ying;Zhu, Nan;Ji, Yu-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6437-6441
    • /
    • 2014
  • Background: Oridonin isolated from Rabdosia rubescens, a plant used to treat cancer in Chinese folk medicine, is one of the most important antitumor active ingredients. Previous studies have shown that oridonin has antitumor activities in vivo and in vitro, but little is known about cell cycle effects of oridonin in gastric cancer. Materials and Methods: MTT assay was adopted to detect the proliferation inhibition of SGC-7901 cells, the cell cycle was assessed by flow cytometry and protein expression by Western blotting. Results: Oridonin could inhibit SGC-7901 cell proliferation, the $IC_{50}$ being $15.6{\mu}M$, and blocked SGC-7901 cell cycling in the $G_2/M$ phase. The agent also decreased the protein expression of cyclinB1 and CDK1. Conclusions: Oridonin may inhibit SGC-7901 growth and block the cells in the $G_2/M$ phase by decreasing Cdk1 and cyclinB1 proteins.

Identification of Proteins Responsible for the Development of Adriamycin Resistance in Human Gastric Cancer Cells Using Comparative Proteomics Analysis

  • Yang, Yi-Xuan;Hu, Huai-Dong;Zhang, Da-Zhi;Ren, Hong
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.853-860
    • /
    • 2007
  • Resistance to anticancer drugs is a major obstacle in the effective treatment of tumors. To understand the mechanisms responsible for multidrug resistance (MDR), a proteomic approach was used to identify proteins that were expressed in different levels by the adriamycinresistant human gastric cancer cell line, SGC7901/ADR, and its parental cell line, SGC7901. Two-dimensional gel electrophoresis (2-DE) and image analysis was used to determine which protein spots were expressed in different levels by the two cell lines. These spots were then partially identified using ESI-Q-TOF mass spectrometry, and the differential expressional levels of the partially identified proteins were then determined by western blot analysis and real-time RT-PCR. Additionally, the association of Nucleophosmin (NPM1), a protein that was highly expressed by SGC7901/ADR, with MDR was analyzed using siRNA. As a result of this study, well-resolved, reproducible 2-DE patterns of SGC7901/ADR and SGC7901 were established, and 16 proteins that may playa role in the development of thermo resistance were identified. Additionally, suppression of NPMl expression was found to enhance adriamycin chemosensitivity in SGC7901/ADR. These results provide a fundamental basis for the elucidation of the molecular mechanism of MDR, which may assist in the treatment of gastric cancer.

S-benzyl-cysteine-mediated Cell Cycle Arrest and Apoptosis Involving Activation of Mitochondrial-dependent Caspase Cascade through the p53 Pathway in Human Gastric Cancer SGC-7901 Cells

  • Sun, Hua-Jun;Meng, Lin-Yi;Shen, Yang;Zhu, Yi-Zhun;Liu, Hong-Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6379-6384
    • /
    • 2013
  • S-benzyl-cysteine (SBC) is a structural analog of S-allylcysteine (SAC), which is one of the major water-soluble compounds in aged garlic extract. In this study, anticancer activities and the underlying mechanisms of SBC action were investigated and compared these with those of SAC using human gastric cancer SGC-7901 cells. SBC significantly suppressed the survival rate of SGC-7901 cells in a concentration- and time-dependent manner, and the inhibitory activities of SBC were stronger than those of SAC. Flow cytometry revealed that SBC induced G2-phase arrest and apoptosis in SGC-7901 cells. Typical apoptotic morphological changes were observed by Hoechst 33258 dye assay. SBC-treatment dramatically induced the dissipation of mitochondrial membrane potential (${\Delta}{\Psi}m$), and enhanced the enzymatic activities of caspase-9 and caspase-3 whilst hardly affecting caspase-8 activity. Furthermore, Western blotting indicated that SBC-induced apoptosis was accompanied by up-regulation of the expression of p53, Bax and the down-regulation of Bcl-2. Taken together, this study suggested that SBC exerts cytotoxic activity involving activation of mitochondrial-dependent apoptosis through p53 and Bax/Bcl-2 pathways in human gastric cancer SGC-7901 cells.

A Sphingosine Kinase-1 Inhibitor, SKI-II, Induces Growth Inhibition and Apoptosis in Human Gastric Cancer Cells

  • Li, Pei-Hua;Wu, Jin-Xia;Zheng, Jun-Nian;Pei, Dong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10381-10385
    • /
    • 2015
  • SKI-II has been reported as an inhibitor of sphingosine kinase 1 and has been extensively used to prove the involvement of sphingosine kinase and sphingosine-1-phosphate (Sphk1) in cellular processes. In the current study, we investigated the effects of SKI-II and its potential mechanisms in human gastric cancer SGC7901 cells. After treatment with SKI-II, cell growth, cell cycle distribution, apoptosis, expression of Sphk1, NF-${\kappa}B$, Bcl-2, Bax and p27 were assessed by MTT assay, flow cytometry, electron microscopy, immunocytochemistry and Western-blot assay, respectively. Our results showed that SKI-II markedly inhibited SGC7901 cell survival in a dose-dependent manner, reduced cell proliferation with accumulation of cells in the G0/G1 phase and induced apoptosis in the tumor cells. Furthermore, Western blotting and immunocytochemistry showed that the expression of p27 and Bax was increased significantly, but the expression of NF-${\kappa}B$, Bcl-2 and Sphk1 decreased by different degrees. These results indicate that SKI-II induced cell growth arrest and apoptosis. The increased apoptotic sensitivity of SGC7901 was correlated with NF-${\kappa}B$ or Bcl-2/Bax activation.

Mechanism of P-glycoprotein Expression in the SGC7901 Human Gastric Adenocarcinoma Cell Line Induced by Cyclooxygenase-2

  • Gu, Kang-Sheng;Chen, Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2379-2383
    • /
    • 2012
  • Objective: To investigate possible signal pathway involvement in multi-drug resistant P-glycoprotein (P-gp) expression induced by cyclooxygenase-2 (COX-2) in a human gastric adenocarcinoma cell line stimulated with pacliaxel (TAX). Methods: The effects of TAX on SGC7901 cell growth with different doses was assessed by MTT assay, along with the effects of the COX-2 selective inhibitor NS-398 and the nuclear factor-KB (NF-KB) pathway inhibitor pyrrolidine dithiocarbamate (PDTC). Influence on COX-2, NF-KB p65 and P-gp expression was determined by Western blotting. Results: TAX, NS-398 and PDTC all reduced SGC7901 growth, with dosedependence. With increasing dose of TAX, the expression of COX-2, p65 and P-gp showed rising trends, this being reversed by NS-398. PDTC also caused decrease in expression of p65 and P-gp over time. Conclusion: COX-2 may induce the expression of P-gp in SGC7901 cell line via the NF-kappa B pathway with pacliaxel stimulation.

Expression and Underlying Roles of IGFBP-3 in Paclitaxel-Treated Gastric Cancer Sgc-7901 Cells

  • Huang, Gang;Dang, Zhong-Feng;Dang, Ya-Mei;Cai, Wei;Li, Yuan;Chen, Yi-Rong;Xie, Xiao-Dong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5741-5745
    • /
    • 2014
  • Purpose: To study the expression of insulin-like growth factor binding proteins (IGFBPs) in paclitaxel-treated gastric cancer SGC-7901 cells, and to further investigate underlying mechanisms. Materials and Methods: Real time PCR and Western blot assays were applied to detect the mRNA and protein expression of IGFBP-2, -3 and -5 after paclitaxel (10 nM) treatment of SGC-7901 cells. In addition IGFBP-3 expression was silenced by RNA interference to determine effects. Cell viability was determined by MTT assay. Cell cycling and apoptosis were assessed by flow cytometry. Results: Compared to the control group, only IGFBP-3 expression was elevated significantly after paclitaxel (10 nM) treatment (p<0.05). Paclitaxel treatment caused cell cycle arrest and apoptosis via downregulating Bcl-2 expression. However, the effect could be abrogated by IGFBP-3 silencing. Conclusions: IGFBP-3 exhibits anti-apoptotic effects on paclitaxel-treated SGC-7901 cells via elevating Bcl-2 expression.

Anti-Proliferation Effects and Molecular Mechanisms of Action of Tetramethypyrazine on Human SGC-7901 Gastric Carcinoma Cells

  • Ji, Ai-Jun;Liu, Sheng-Lin;Ju, Wen-Zheng;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3581-3586
    • /
    • 2014
  • Aim: To investigate the effects of tetramethypyrazine (TMP) on proliferation and apoptosis of the human gastric carcinoma cell line 7901 and its possible mechanism of action. Methods: The viability of TMP-treated 7901 cells was measured with a 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and cell apoptosis was analyzed by flow cytometry. The distribution of cells in different phases of cell cycle after exposure of TMPs was analyzed with flow cytometry. To investigate the molecular mechanisms of TMP-mediated apoptosis, the expression of NF-${\kappa}Bp65$, cyclinD1 and p16 in SGC-7901 cells was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. Results: TMP inhibited the proliferation of human gastric carcinoma cell line 7901 in dose and time dependent manners. Cell growth was suppressed by TMP at different concentrations (0.25, 0.5, 1.0, 2.0 mg/ml), the inhibition rate is 0.46%, 4.36%, 14.8%, 76.1% (48h) and 15.5%, 18.5%, 41.2%, 89.8% (72h) respectively. When the concentration of TMPs was 2.0mg/ml, G1-phase arrest in the SGC-7901 cells was significant based on the data for cell cycle distribution. RT-PCR demonstrated that NF-${\kappa}Bp65$ and cyclin D1 mRNA expression was significantly down-regulated in 7901 cells treated with 2.0 mg/ml TMP for 72h (p<0.05), while the p16 mRNA level was up-regulated (p<0.05). The protein expression of NF-${\kappa}Bp65$ and cyclin D1 decreased gradually with the increase in TMP concentration, compared with control cells (p<0.05), while expression of protein p16 was up-regulated (p<0.01). Conclusion: TMP exhibits significant anti-proliferative and pro-apoptotic effects on the human gastric carcinoma cell line SGC-7901. NF-${\kappa}Bp65$, cyclinD1 and p16 may also play important roles in the regulation mechanisms.

Reversion of Multidrug Resistance by SKI-II in SGC7901/DDP Cells and Exploration of Underlying Mechanisms

  • Zhu, Zu-An;Zhu, Zheng-Qiu;Cai, Hong-Xing;Liu, Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권2호
    • /
    • pp.625-631
    • /
    • 2012
  • In order to investigate whether SKI-II could reverse drug resistance and its possible mechanisms, we treated SGC7901/DDP cells with SKI-II or SKI-II in combination with DDP. Then cell growth, apoptosis, micromorphological changes, and expression of SphK1, P-gp, NF-${\kappa}B$, Bcl-2 and Bax were assessed by MTT assay, flow cytometry, electron microscopy, immunocytochemistry and Western blot assay respectively. SGC7901/DDP cells were insensitive to cisplatin 2.5mg/L, but when pretreated with SKI-II, their proliferation was inhibited by cisplatin 2.5mg/L significantly, the inhibition rate increasing with time and dose. The apoptosis rate was also significantly elevated. Expression of SphK1 and P-gp was decreased significantly, Pearson correlation analysis showing significant correlation between the two (r=0.595, P<0.01). Expression of NF-${\kappa}B$ and Bcl-2 was decreased significantly,while that of Bax was increased, compared to the control group. There were significant correlations between SphK1 and NF-${\kappa}B$(r=0.723, P<0.01), NF-${\kappa}B$ and Bcl-2(r=0.768, P<0.01). All these data indicated that SKI-II could reverse drug resistance of SGC7901/DDP to cisplatin by down-regulating expression of P-gp and up-regulating apoptosis through down-regulation of SphK1. The increased apoptotic sensitivity of SGC7901/DDP to cisplatin was due to the decreasing proportion of Bcl-2/Bax via down-regulating NF-${\kappa}B$.