• Title/Summary/Keyword: SGC-7901

Search Result 37, Processing Time 0.023 seconds

KLK6 Promotes Growth, Migration, and Invasion of Gastric Cancer Cells

  • Zhu, Shengxing;Shi, Jihua;Zhang, Shanfeng;Li, Zhen
    • Journal of Gastric Cancer
    • /
    • v.18 no.4
    • /
    • pp.356-367
    • /
    • 2018
  • Purpose: Kallikrein (KLK) proteases are hormone-like signaling molecules with critical functions in different cancers. This study investigated the expression of KLK6 in gastric cancer and its potential role in the growth, migration, and invasion of gastric cancer cells. Materials and Methods: In this study, we compared protein levels of KLK6, vascular endothelial growth factor (VEGF), and matrix metallopeptidase (MMP) 9 in normal gastric epithelial and gastric cancer cell lines by western blot. Fluorescence-activated cell sorting was employed to sort 2 clones of SGC-7901 cells with distinct KLK6 expression, namely, KLK6-high ($KLK6^{high}$) and KLK6-low ($KLK6^{low}$), which were then expanded. Lastly, immunohistochemical analysis was performed to investigate KLK6 expression in gastric cancer patients. Results: The expression levels of KLK6, VEGF, and MMP 9, were significantly higher in the gastric cancer cell lines SGC-7901, BGC-823, MKN-28, and MGC-803 than in the normal gastric epithelial cell line GES-1. Compared to $KLK6^{low}$ cells, $KLK6^{high}$ cells showed enhanced viability, colony-forming ability, migration, and invasion potential in vitro. Importantly, immunohistochemical analysis of a human gastric cancer tissue cohort revealed that the staining for KLK6, VEGF, and MMP9 was markedly stronger in the cancerous tissues than in the adjacent normal tissues. KLK6 expression also correlated with that of VEGF and MMP9 expression, as well as several key clinicopathological parameters. Conclusions: Together, these results suggest an important role for KLK6 in human gastric cancer progression.

Ethanol but not Aqueous Extracts of Tubers of Sauromatum Giganteum(Engl.) Cusimano and Hett Inhibit Cancer Cell Proliferation

  • Gao, Shi-Yong;Li, Jun;Wang, Long;Sun, Qiu-Jia;Gong, Yun-Fei;Gang, Jian;Su, Yi-Jun;Ji, Yu-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10613-10619
    • /
    • 2015
  • Background: Both alcohol and aqueous extracts of Sauromatum giganteum(Engl.) Cusimano and Hett, the dried root tuber of which is named Baifuzi in Chinese, have been used for folklore treatment of cancer in Northeast of China. However, little is known about which is most suitable to the cancer therapy. Materials and Methods: Serum pharmacology and MTT assays were adopted to detect the effects of ethanol and aqueous extracts of Sauromatum giganteum(Engl.) Cusimano and Hett, prepared by heat reflux methods, on proliferation of different cancer cells. Results: Cancer cells treated with medium supplemented with 10%, 20%, 40% serum(v/v) containing ethanol extract had a decline in viability, with inhibition rates of 7.69%, 21.8%, 41.9% in MCF-7 cells, 42.8%, 48.1%, 51.8% in SGC-7901 cells, 44.1%, 49.2%, 53.7% in SMMC-7721 cells, 6.8%, 15.2%, 39.8% in HepG2 cells, 7.57%, 16.3%, 36.2% in HeLa cells, 6.24%, 12.5%, 27.4% in A549 cells, and 7.20%, 17.5%, 31.3% in MDA-MB-231 cells, respectively. Viability in the aqueous extract groups was no different with that of controls. Conclusions: An ethanol extract of Sauromatum giganteum(Engl.) Cusimano and Hett inhibited the proliferation of SMMC-7721, SGC-7901 and MCF-7 cells, which supports the use of alcoholic but not aqueous extracts for control of sensive cancers, which might include hepatocarcinoma, gastric cancer and breast cancer.

Two New Flavonoids from Dragon's Blood of Dracaena cambodiana

  • Mei, Wen-Li;Luo, Ying;Wang, Hui;Shen, Hai-Yan;Zeng, Yan-Bo;Dai, Hao-Fu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1791-1794
    • /
    • 2013
  • Phytochemical investigation on dragon's blood of Dracaena cambodiana led to the discovery of two new flavonoid derivatives, cambodianin G (1) and cambodianin H (2). Their structures were elucidated on the basis of detailed spectroscopic analysis, including 1D and 2D NMR techniques and chemical methods. The two compounds were observed to exhibit antibacterial activities against Staphylococcus aureus, and compound 1 showed cytotoxicities against K562 and SGC-7901 cell lines.

3,7-Dihydroxy-2,4,6-trimethoxyphenanthrene, A New Phenanthrene from Bulbophyllum Odoratissimum (Bulbophyllum Odoratissimum에서 추출한 새로운 페난트렌, 3,7-Dihydroxy-2,4,6-trimethoxyphenanthrene)

  • Chen, Ye-Gao;Xu, Jun-Ju;Yu, Hong;Qing, Chen;Zhang, Yan-Li;Liu, Ying;Wang, Ji-Hua
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.352-355
    • /
    • 2007
  • A new phenanthrene derivative 3,7-dihydroxy-2,4,6-trimethoxyphenanthrene was isolated from the all plant of Bulbophyllum odoratissimum, and its structure was elucidated by extensive spectral studies and chemical transformation. The compound displayed cytotoxicity against the growth of human leukemia cell lines K562 and HL-60, human lung adenocarcinoma A549, human hepatoma BEL-7402 and human stomach cancer cell lines SGC-7901 with IC50 values of 14.23, 10.02, 3.42, 15.36 and 1.13 mg/ml respectively.

Knockdown of MDR1 Increases the Sensitivity to Adriamycin in Drug Resistant Gastric Cancer Cells

  • Zhu, Chun-Yu;Lv, Yan-Ping;Yan, Deng-Feng;Gao, Fu-Lian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6757-6760
    • /
    • 2013
  • Gastric cancer is one of the most frequently occurring malignancies in the world. Development of multiple drug resistance (MDR) to chemotherapy is known as the major cause of treatment failure for gastric cancer. Multiple drug resistance 1/P-glycoprotein (MDR1/p-gp) contributes to drug resistance via ATP-dependent drug efflux pumps and is overexpressed in many solid tumors including gastric cancer. To investigate the role of MDR1 knockdown on drug resistance reversal, we knocked down MDR1 expression using shRNA in drug resistant gastric cancer cells and examined the consequences with regard to adriamycin (ADR) accumulation and drug-sensitivity. Two shRNAs efficiently inhibited mRNA and protein expression of MDR1 in SGC7901-MDR1 cells. MDR1 knockdown obviously decreased the ADR accumulation in cells and increased the sensitivity to ADR treatment. Together, our results revealed a crucial role of MDR1 in drug resistance and confirmed that MDR1 knockdown could reverse this phenotype in gastric cancer cells.

Cytotoxic Constituents from Solanum Lyratum

  • Sun Li-Xin;Fu Wen-wei;Ren Jing;Xu Liang;Bi Kai-Shun;Wang Min-Wei
    • Archives of Pharmacal Research
    • /
    • v.29 no.2
    • /
    • pp.135-139
    • /
    • 2006
  • Activity-guided fractionation of the ethanol extract of the whole plant from Solanum lyratum resulted in the isolation of a new pregnane derivative glycoside, 16-dehydropregnenolone 3-O-${\alpha}$-L-rhamnopyranosyl-($1{\to}2$)-${\beta}$-D-glucopyranosid uronic acid (2), as well as other six known compounds: 16-dehydropregnenolone (1), allopregenolone (3), protocatechuic acid (4), vanillic acid (5), caffeic acid (6), and scopoletin (7). The structures of the isolated compounds were elucidated on the basis of their spectral data and chemical evidences. Compounds 1, 3, 4 were isolated for the first time from this plant. Cytotoxic activities of the isolated compounds were evaluated. Compound 1 exhibited significant cytotoxic activity against A375-S2, HeLa, SGC-7901, and Bel-7402 with $IC_{50}$ values of $13.1{\pm}0.9,\;21.5{\pm}1.0,\;40.2{\pm}0.7$, and $49.8{\pm}1.2\;{\mu}g/mL$, respectively.

Antitumor Activity of Chloroquine in Combination with Cisplatin in Human Gastric Cancer Xenografts

  • Zhang, Hui-Qing;Fang, Nian;Liu, Xiao-Mei;Xiong, Shu-Ping;Liao, Yu-Qian;Jin, Wen-Jian;Song, Rong-Feng;Wan, Yi-Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3907-3912
    • /
    • 2015
  • Purpose: To investigate the antitumor activity and mechanism of chloroquine (CQ) in combination with cisplatin (DDP) in nude mice xenografted with gastric cancer SGC7901 cells. Materials and Methods: 35 cases of gastric cancer patients with malignant ascites were enrolled and intraperitoneal cisplatin injection was performed. Ascites were collected before and 5 days after perfusion for assessment of autophagy levels in cancer cells. In addition, 24 tumor-bearing mice were randomly divided into control, DDP, CQ and CQ + DDP groups. Results: In 54.3% (19/35) of patients the treatment was therapeutically effective (OR), 5 days after peritoneal chemotherapy, 13 patients had the decreased ascites Beclin-1 mRNA levels. In 16 patients who had NR, only 2 cases had decreased Beclin-1 (P=0.001). Compared with the control group, the xenograft growth in nude mice in the DDP group was low, and the inhibition rate was 47.6%. In combination with chloroquine, the inhibition rate increased to 84.7% (P<0.01). The LC3-II/I ratio, and Beclin1 and MDR1/P-gp expression were decreased, while caspase 3 protein levels increased (P<0.05). Conclusions: Antitumor ability of cisplatin was associated with autophagy activity and chloroquine can enhance chemosensitivity to cisplatin in gastric cancer xenografts nude mice.

Preparation of 5-fluorouracil-loaded Nanoparticles and Study of Interaction with Gastric Cancer Cells

  • Fan, Yu-Ling;Fan, Bing-Yu;Li, Qiang;Di, Hai-Xiao;Meng, Xiang-Yu;Ling, Na
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7611-7615
    • /
    • 2014
  • Aims: To prepare 5-fluorouracil (5-Fu) nanoparticles with higher encapsulation efficiency and drug loading, and then investigate interaction with the SGC-7901 gastric cancer cell line. Materials and Methods: Prescription was optimized by orthogonal experiments, the encapsulation efficiency and loading capacity were tested by high-performance liquid chromatography, and inhibition of proliferation by 5-Fu nanoparticles and 5-Fu given to cells for 24, 48 and 72 hours was investigated by methyl thiazolyl tetrazolium assay (MTT). In addition, 5-Fu nanoparticles were labeled by fluorescein isothiocyanate (FITC), and absorption into cells was tested by flow cytometry. Results: The optimal conditions for preparation were concentrations of 5-Fu of 5mg/ml, of $CaCl_2$ of 60 mg/ml and of chitosan of 2 mg/ml. With a stirring speed of 1200rpm, encapsulation efficiency of 5-Fu nanoparticles was $55.4{\pm}1.10%$ and loading capacity was $4.22{\pm}0.14%$; gastric cancer cells were significantly inhibited by 5-Fu nanoparticles in a time and concentration dependent manner, and compared to 5-Fu with slower drug release, in a certain concentration range, inhibition with 5-Fu nanoparticles was stronger. 5-Fu nanoparticles were absorbed by the cells in line with the concentration. Conclusions: 5-Fu nanoparticles can inhibit growth of gastric cancer cells in vitro to a greater extent than with 5-Fu with good adsorption characteristics, supporting feasibility as a carrier.

Effects of Multiple-target Anti-microRNA Antisense Oligodeoxyribonucleotides on Proliferation and Migration of Gastric Cancer Cells

  • Xu, Ling;Dai, Wei-Qi;Xu, Xuan-Fu;Wang, Fan;He, Lei;Guo, Chuan-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3203-3207
    • /
    • 2012
  • Backgrounds: To investigate the inhibiting effects of multi-target anti-microRNA antisense oligonucleotide (MTg-AMOs) on proliferation and migration of human gastric cancer cells. Methods: Single anti-microRNA antisense oligonucleotides (AMOs) and MTg-AMOs for miR-221, 21, and 106a were designed and transfected into SGC7901, a gastric cancer cell line, to target the activity of these miRNAs. Their expression was analyzed using stem-loop RT-PCR and effects of MTg-AMOs on human gastric cancer cells were determined using the following two assay methods: CCK8 for cell proliferation and transwells for migration. Results: In the CCK-8 cell proliferation assay, $0.6{\mu}mol/L$ was selected as the preferred concentration of MTg-AMOs and incubation time was 72 hours. Under these experimental conditions, MTg-AMOs demonstrated better suppression of the expression of miR-221, miR-106a, miR-21 in gastric cancer cells than that of single AMOs (P = 0.014, 0.024; 0.038, respectively). Migration activity was also clearly decreased as compared to those in randomized and blank control groups ($28{\pm}4$ Vs $54{\pm}3$, P <0.01; $28{\pm}4$ Vs $59{\pm}4$, P < 0.01). Conclusions: MTg-AMOs can specifically inhibit the expression of multiple miRNAs, and effectively antagonize proliferation and migration of gastric cancer cells promoted by oncomirs.

Golgi Phosphoprotein 2 Down-regulates the Th1 Response in Human Gastric Cancer Cells by Suppressing IL-12A

  • Tang, Qing-Feng;Ji, Qing;Tang, Yu;Hu, Song-Jiao;Bao, Yi-Jie;Peng, Wen;Yin, Pei-Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5747-5751
    • /
    • 2013
  • Golgi phosphoprotein 2 (GOLPH2) is a very important biomarker in a variety of diseases. Its biological function is not clear, particularly in gastric cancer. To investigate the role of GOLPH2 in human gastric cancer, and determine its effect on the Th1 lymphocyte response, its expression and that of IL-12A were measured by real-time PCR and immunohistochemistry. The relationship between GOLPH2 and IL-12A was analysed statistically. The effect of GOLPH2 on the Th1 lymphocyte response was investigated with an in vitro co-culture system. The results showed that in human gastric cancer, the expression of GOLPH2 was significantly higher and the expression of IL-12A was lower than in normal gastric mucosal tissues, and the expression levels of GOLPH2 and IL-12A were negatively correlated. In addition, obvious down-regulation of the Th1 response was observed when lymphocytes were co-cultured with gastric cancer SGC7901 cells over-expressing GOLPH2. GOLPH2 down-regulated the expression of IL-12A, and inhibited the expression of TNF-${\alpha}$ and IFN-${\gamma}$. The results indicated that GOLPH2 down-regulates the Th1 response via suppression of IL-12A in human gastric cancer, and this might provide a target for the prevention and treatment.