• Title/Summary/Keyword: SF6 Gas

Search Result 567, Processing Time 0.031 seconds

Analysis of Thermal Recovery Characteristics for $SF^6$ Gas-Blast Arc within Laval Nozzle (Laval Nozzle에 대한 $SF^6$ 아크의 열적회복특성 해석)

  • Song, Gi-Dong;Lee, Byeong-Yun;Gyeong-Yeop;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.522-529
    • /
    • 2002
  • In this paper, computer simulations of the physical Phenomena occurring in the arc region before and after current zero were carried out to evaluate the thermal recovery characteristics of a Laval nozzle. A commercial CFD program "PHOENICS" is used for the simulation and the user-coded subroutines to consider the arcing phenomena were added to this program by the authors. The computed results were verified by the comparison with the test results presented by the research group of GE Co.(General Electric Company). In order to investigate the state of the arc region after current zero, the simulation was carried out with three steps. They are steady state arc simulation, transient arc simulation before current zero, and transient hot-gas flow simulation after current zero. The semi-experimental arc radiation model is adapted to consider the radiation energy transport and Prandtl's mixing length model is employed as the turbulence model. The electric field and the magnetic field were calculated with the same grid structure used for the simulation of the flow field. The post-arc current was calculated to evaluate the thermal recovery characteristics after current zero. Compared with the results obtained by GE Co., it has been found that the critical RRRV(ratio of rise of recovery voltage) will be determined previously by this study.his study.

Large-scale synthesis of the carbon coils using stainless steel substrate

  • Jeon, Young-Chul;Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.296-301
    • /
    • 2013
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under the thermal chemical vapor deposition system. A 304-type stainless steel was used as a substrate with nickel powders as the catalyst. The surface of the substrate was pretreated using a sand paper or a mechanical drill to enhance the production yield of the carbon coils. The characteristics of the deposited carbon nanomaterials on the substrates were investigated according to the surface state on the stainless steel substrate. The protrusion induced by the grooves on the substrate surface could enhance the formation of the carbon nanomaterials having the coils geometries. The cause for the enhancement of the carbon coils formation by the grooves was suggested and discussed with the surface energies for the interaction between as-growing carbon elements. Finally, we could obtain the massive production yield of the carbon coils by the surface pretreatment using SiC sand papers on the several tens grooved stainless steel substrate.

Incipient Fault Detection of Reactive Ion Etching Process

  • Hong, Sang-Jeen;Park, Jae-Hyun;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.262-271
    • /
    • 2005
  • In order to achieve timely and accurate fault detection of plasma etching process, neural network based time series modeling has been applied to reactive ion etching (RIE) using two different in-situ plasma-monitoring sensors called optical emission spectroscopy (OES) and residual gas analyzer (RGA). Four different subsystems of RIE (such as RF power, chamber pressure, and two gas flows) were considered as potential sources of fault, and multiple degrees of faults were tested. OES and RGA data were simultaneously collected while the etching of benzocyclobutene (BCB) in a $SF_6/O_2$ plasma was taking place. To simulate established TSNNs as incipient fault detectors, each TSNN was trained to learn the parameters at t, t+T, ... , and t+4T. This prediction scheme could effectively compensate run-time-delay (RTD) caused by data preprocessing and computation. Satisfying results are presented in this paper, and it turned out that OES is more sensitive to RF power and RGA is to chamber pressure and gas flows. Therefore, the combination of these two sensors is recommended for better fault detection, and they show a potential to the applications of not only incipient fault detection but also incipient real-time diagnosis.

Analysis on PD Pulse Distribution by Defects Depending on SF6 Pressure (SF6 압력에 따른 결함별 부분 방전 펄스의 분포 분석)

  • Kim, Sun-Jae;Jo, Hyang-Eun;Jeong, Gi-Woo;Kil, Gyung-Suk;Kim, Sung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.40-45
    • /
    • 2015
  • Electrode systems: a protrusion on conductor (POC), a protrusion on enclosure (POE), a crack in epoxy plate and a free particle (FP) were fabricated to simulate insulation defects in a gas insulated switchgear (GIS). $SF_6$ gas was filled in the electrode systems by 3 bar and/or 5 bar, respectively. Partial discharge (PD) pulses were detected through a $50{\Omega}$ non-inductive resistor. A calibration test was carried out according to IEC 60270, and the sensitivity was 0.25 pC/mV. PD pulses were distributed in the phase of $50^{\circ}{\sim}135^{\circ}$ and over 95% of them existed in the phase of $55^{\circ}{\sim}120^{\circ}$ for the POC. PD pulses were distributed in the phase of $230^{\circ}{\sim}310^{\circ}$ and over 90% of them existed in phase of $220^{\circ}{\sim}300^{\circ}$ for the POE. PD pulses occurred in the phase of $40^{\circ}{\sim}60^{\circ}$ and $220^{\circ}{\sim}300^{\circ}$ for the crack, and pulse counts were 25% higher in negative polarity than in positive polarity. PD pulses were distributed in every phase unlike to other three electrode systems and the peak magnitude was measured at $118^{\circ}$ and $260^{\circ}$ for the FP. As described above, PD pulses were observed in positive polarity for the POC, in negative one for the POE, in both one for the crack and the FP. In conclusion, it is expected that the identification rate of defect type can be improved by considering the polarity ratio of PD pulses on the PRPDA method.

The decision of the inner fault of 154kV Gas Insulated Transformer through analyzing ingredients of insulated gas. (절연가스 성분분석을 통한 154kV 가스절연변압기 내부결함 판정)

  • Mun, Byong-Seon;Tark, Eui-Gyun;Lee, Tae-Kyu;Park, Chan-Eui;Lee, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.447-448
    • /
    • 2015
  • In order to looking for method of detecting inner fault of a 154kV GIT(Gas Insulated Transformer), it was considered that diagnosis partial discharge(PD) in UHF band and that analyze the ingredients of SF6 insulating gas. UHF PD diagnosis that is optimized to GIS was considered unsuitable through checking of inner part of a transformers which PD is detected excessively. The method analyzing the content of six kinds of gas(SOF2, SO2F2, etc)was decided through analysis of chemical degradation and combination process and discharge experiment. With the result applying this method to analyze the content of insulated gas of eighty five Gas Insulated Transformers.

  • PDF

Surface discharge Characteristics of epoxy resin in different media (이종매질 내 에폭시수지의 연면방전특성)

  • Park, He-Rie;Lee, Jung-Hwan;Choi, Eun-Hyeok;Jang, Seung-Ho;Lee, Sang-Ho;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.301-303
    • /
    • 2009
  • This paper presents a basic data of the surface discharge characteristics of solid dielectric in various gas including $SF_6$ and environmentally friendly gas as Dry-Air and $N_2$ gas. Used electrodes are needle and plane. Used solid dielectric which is installed between the electrodes is made of epoxy resin and is disc form of 100[mm] diameter and 2, 3[mm] thickness. AC In same condition, we can obtain different surface dielectric strength. Increased pressure and thickness caused increased surface dielectric strength.

  • PDF

Application of Joint Electro-Chemical Detection for Gas Insulated Switchgear Fault Diagnosis

  • Li, Liping;Tang, Ju;Liu, Yilu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1765-1772
    • /
    • 2015
  • The integrity of the gas insulated switchgear (GIS) is vital to the safety of an entire power grid. However, there are some limitations on the techniques of detecting and diagnosing partial discharge (PD) induced by insulation defects in GIS. This paper proposes a joint electro-chemical detection method to resolve the problems of incomplete PD data source and also investigates a new unique fault diagnosis method to enhance the reliability of data processing. By employing ultra-high frequency method for online monitoring and the chemical method for detecting SF6 decomposition offline, the acquired data can form a more complete interpretation of PD signals. By utilizing DS evidence theory, the diagnostic results with tests on the four typical defects show the validity of the new fault diagnosis system. With higher accuracy and lower computation cost, the present research provides a promising way to make a more accurate decision in practical application.

New technology trend and characteristic for GIL (GIL(Gas Insulated Line)에 관한 신기술 동향 및 특징)

  • Jung, Si-Hwan;Kim, Chel-Soo;Kang, Cheul-Won;Kim, Wan-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.99-101
    • /
    • 2006
  • As the same concept with GIB, GIL(Gas Insulated Line) has been established and run for the first time in New Jersey, America, in 1972. At the beginning, the installation condition of GIL was complicated and the construction cost was excessive, so it was not economical, but the construction cost was substantially reduced with the use of insulation material which is the mixture of $SF_6$ and $N_2$ Gas in Germany, in 1990s. And also comparing to cable, GIL has lots of advantages, such as being capable of the high voltage transmission, being applied to reclosing and lowering the strength of electromagnetic force, Due to these advantages, GIL is recently accepted in many countries.

  • PDF

Measurements of Ventilation Effectiveness in an Underfloor Air-Conditioned Space Using a Tracer Gas Technique

  • Han, Hwa-Taik;Seo, S.Y.;Kim, M.H.;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.91-100
    • /
    • 1999
  • This paper investigates ventilation characteristics of an environmental chamber simulating an under-floor air conditioning system for isothermal and cooling supply air conditions. The tracer gas sulfur-hexafluoride (SF$F_6$) was injected into a supply duct using step-up and step-down methods. Local mean and room mean ages were calculated from the concentrations measured at internal points and at the exhaust duct. The air change efficiency of the chamber has been found to be greater in cooling conditions than in isothermal conditions. Also the room air change efficiency is not significantly affected but slightly improved by the presence of a supply diffuser.

  • PDF

Al corrosion phenomena on the Al grain boundary after AlCu plasma etching (AlCu 플라즈마 식각후 Al 결정입계에서 Al 부식현상)

  • 김창일;권광호;윤선진;김상기;백규하;남기수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.47-52
    • /
    • 1996
  • Cl-based gas chemistry is generally used to etching for al alloy metallization. After the etching of Al alloy with Cl-based gas plasma, residual chlorine on Al alloy reacts with H$_{2}$O due to air exposure and results in Al corrosion. In this study, the corrosion phenomena of Al wer examined with XPS(X-ray photoelectron spectroscopy) and SEM (scanning electorn microscopy). It was confirmed that chlorine mainly existed at the grian boundary of Al alloy after plasma etching of Al alloy with cl-based gas chemistry and Al corrosion was largely generated at the grain boundary of Al alloy. And residual chlorine was passivated by sulfur and fluorine which were generated by SF$_{6}$ plasma. These effects of passivation reduced the Al corrosion due to air exposure.

  • PDF