• Title/Summary/Keyword: SF$_{}$ 6/ gas circuit breaker

Search Result 55, Processing Time 0.025 seconds

Development of Analysis Program for SF6 Arc Plasma (SF6 아크플라즈마 해석을 위한 프로그램 개발)

  • Lee, Jong-C.;Ahn, Heui-Sub;Choi, Jong-Ung;Kim, Young-Geun;Oh, Il-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.814-816
    • /
    • 2002
  • Because there is a strong interaction between the arc discharge and their surroundings, it is not easy to predict the characteristics of industrial arc plasma systems such as gas circuit breakers. The design procedure of these systems is still largely based on trial and error, although the situation is rapidly improving because of the available computational power at a cost in which is still coming down. The desire to predict the behavior of arc plasma systems, thus optimizing and reducing the develpment cost, has been the motivation of these arc researches. In this paper. we have simulated the switching operation of a gas circuit breaker during high current area using a computational fluid dynamics considered the electric field analysis, the radiation model and the effeects of turbulence.

  • PDF

Influence of twisting angle between fixed contact and movable contact on arc driving force in 3petal spiral type vacuum interrupter (3petal spiral type vacuum interrupter에서 가동접점전극과 고정접점전극간의 마주보는 각도의 변화가 아크구동력에 미치는 영향)

  • Kim, Byoung-Chul;Yun, Jae-Hun;Lee, Seung-Soo;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.480-480
    • /
    • 2008
  • Vacuum circuit breaker(VCB) is now emerging as an alternative of gas circuit breaker(GCB) which uses SF6 gas as insulating material whose dielectric strength is outstanding. But we have to reduce SF6 gas because SF6 gas is one of greenhouse gas and efforts to reduce greenhouse gas are now trend of the world. Therefore, we can say VCB is the optimal alternative of GCB because vacuum is environmentally friendly. The vacuum interrupter is the core part of VCB to interrupt arcing current. There are mainly two methods to extinguish arc. One is radial magnetic field (RMF) method and the other is axial magnetic field (AMF) method. We deals with RMF method in this paper. Compared with AMP, RMF arc quenching method has different principle to extinguish arc. In case of RMF method, pinch effect is much larger than AMF method. Because of pinch effect RMF type contact electrodes have the single large spot which is severly damaged and melted while AMF type contact electrodes have small and multiple spots which are slightly damaged and melted. To prevent contact electrode being damaged and melted from high temperature-arc, RMF method uses Lorentz force to move arc. In this paper we calculated and compared the arc driving force of two cases and we analyzed the force acting on each part of arc by means of commercial finite element method software Maxwell 3D. They have 3petals and we considered two cases. One is the case when fixed(upper) and movable(lower) contacts are in mirror arrangement (Case 1). The other is the case when one of two contacts (movable contact) is revolved at maximum angle as possible as it can be (Case 2). And at each case above, we analyzed arc driving force at two positions, position 1 is the closest to the center of contact and position 2 is near the edge of petal on fixed contact. As a result we could find that Case 2 generated stronger arc driving force than Case 1 at position 1. But at position 2 Case 1 generated stronger arc driving force than Case 2. This simulation method can contribute to optimizing spiral-type electrode designs in a view of arc driving force.

  • PDF

Arc Analysis of Extra High Voltage Gas Circuit Breaker (초고압 가스차단부 아크 해석)

  • Lee, B.Y.;Park, K.Y.;Song, K.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.64-67
    • /
    • 2000
  • 이 논문에서는 대전류 차단과정에 가스차단기의 차단부내에서 발생하는 아크를 해석하기 위한 기법을 기술한다. 차단부내에서 아크 및 아크에 의해 가열된 가스의 흐름을 해석하기 위해 상용의 유동해석 프로그램인 Phoenics를 이용하였다. 이 프로그램에 아크의 방사에 의한 열전달을 고려하기 위해 아크 모델을 사용자 코딩을 이용하여 결합하였다. 또한 아크전류에 의해 발생한 자계와 전류가 유동에 미치는 영향을 포함시켰으며 유동의 난류특성을 Prandtl의 혼합거리모델을 이용하여 모의하였다. 본 논문에서 제안된 아크해 하여 보았다. 시험결과와의 비교가 여의치 않았으나 계산된 결과로부터 제안된 아크해석기법의 활용가 계산을 확인할 수 있었다. 향후 시험결과와의 비교를 실시할 예정이며 본 연구의 최종적인 목표인 SF6 가스차단기의 대전류 차단성능 평가에 적용 가능하도록 프로그램을 수정 보완해 나갈 것이다.

  • PDF

Steady State Hot Gas Flow Analysis for Nozzle Model Considering Nozzle Ab (노즐용삭을 고려한 노즐모델의 정상상태 열가스 유동해석)

  • Lee, B.Y.;Song, K.D.;Park, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.622-624
    • /
    • 2002
  • This paper describes a method for steady state hot gas flow analysis considering nozzle ablation for the nozzle of $SF_6$ gas circuit breaker. In order to take account of the effect of ablated nozzle material on the hot gas flow. the PTFE mass concentration equation is added to the established equations for hot gas flow analysis. The steady state simulations were carried out under the condition of DC current flows and the results are presented.

  • PDF

Development or 170KV 50KA GCB with Common three-pole operating mechanism (3상일괄조작형 170KV 50KA GCB의 개발)

  • Song, W.P.;kim, H.J.;Sung, B.J.;Lee, C.H.;Noh, C.W.;Kwon, W.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.626-628
    • /
    • 1992
  • GCB(Gas Circuit Breaker) and GIS(Gas Insulated Switchgear) using $SF_6$ are worldwidely applied over 72.5KV classes. It Is known that $SF_6$ gas has the most superior characteristics among the extingushing and insulating media. Our Company has produced GCB and GIS from early 1980's and at present, we are producing 362KV 40KA class which is the highest voltage in our country. According to change KEPCO's standards (ESB standards), our company has redeveloped and tested for all productions type from 1989. During redeveloping, we largely contribute raise reliability of power system, through all the more improvement for performance and quality of manufactures. One of them, we developed 170KV 50KA GCB with common three-pole operating mechanism and sucessfully completed test of KERI under KEPCO presence, at first in our country. Thus, we announce the outline of it.

  • PDF

Recovery of $SF_6$ gas from Gaseous Mixture ($SF_6/N_2/O_2/CF_4$) through Polymeric Membranes (고분자 분리막을 이용한 혼합가스($SF_6/N_2/O_2/CF_4$)로부터 $SF_6$의 회수)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Choi, Ho-Sang;Lee, Sang-Hyup
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • During the maintenance, repair and replacement process of circuit breaker, $SF_6$ reacted with input air in arc discharge, which led to the production of by-product gases (eg, $N_2$, $O_2$, $CF_4$, $SO_2$, $H_2O$, HF, $SOF_2$, $CuF_2$, $WO_3$). Among these various by-product gases, $N_2$, $O_2$, $CF_4$ is major component. Therefore, the effective separation process is necessary to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. In this study, the membrane separation process was applied to recycle the $SF_6$ gas from the mixture gas containing $N_2$, $O_2$, $CF_4$. The concentration of $SF_6$ gas in gas produced from the electric power industry is over than 90 vol%. Therefore, we made the simulated gas containing $N_2$, $O_2$, $CF_4$, $SF_6$ which the concentration of $SF_6$ gas is minimum 90 vol%. From the results of membrane separation process of $SF_6$ gas from $N_2$, $O_2$, $CF_4$ $SF_6$ mixture gases, PSF membrane shown the highest recovery efficiency 92.7%, in $25^{\circ}C$ and 150 cc/min of retentate flow rate. On the other hand, PC membrane shown the highest recovery efficiency 74.8%, in $45^{\circ}C$ and 150 cc/min of retentate flow rate. Also, the highest rejection rate of $N_2$, $O_2$, $CF_4$ is 80, 74 and 58.9% seperately in the same operation condition of highest recovery efficiency. From the results, we supposed the membrane separation process as the effective $SF_6$ separation and recycle process from the mixture gas containing $N_2$, $O_2$, $CF_4$, $SF_6$.

Thermal Flow Characteristics of Gas Circuit Breakers near Current Zero Period (가스차단기 전류영점영역에서의 열유동특성에 관한 연구)

  • Lee, Jong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1772-1774
    • /
    • 2004
  • Because the physics occurring during an interruption process is not well known, it is not easy to analyze the characteristics of a self-blast circuit breaker neither theoretically nor experimentally. Fortunately the available computational power and the numerical method improved recently make it possible to predict an interruption process as precisely and fast as possible. Therefore many researches using computational methods have been done for the interruption process of interrupters and applied to extend the information such as thermal and dielectric reignition. In this paper, we have simulated the interruption process of SF6 self-blast circuit breakers with the arc plasma during the fault interruption of a 10 kA current. The CFD program used here is coupled with the electromagnetic field analysis, the radiation model and the effects of turbulence. Through this work, we have get further information about the thermal performance as well as the behavior of the arc. The results have been compared with the measured arc voltage.

  • PDF

A Study on the Computational Technique of Cold Gas Flow in Puffer Interrupter (파퍼식 차단부의 냉가스 유동해석기법에 관한 연구)

  • Choi, Y.K.;Song, K.D.;Shin, Y.J.;Park, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.104-108
    • /
    • 1997
  • The puffer type GCB(gas circuit breaker) has been widely used in modern transmission power system. Understanding the motion of cold $SF_6$ gas flow is essential for the better design of those GCB's. For this purpose, a program using the so-called FLIC(Fluid-In-Cell) method has been developed and applied to a puffer type GCB. The calculated results are compared with those from the measurement and the computation by commercial CFD (Computational Fluid Dynamics) package 'RAMPANT' and show fairly good agreement.

  • PDF

Reduction of the Electric Field Concentration at the Triple Junction of the Vacuum Interrupter by Using the Application of Functionally Graded Material (기능성 경사 재료의 적용을 통한 진공 인터럽터의 삼중점 전계 완화)

  • Choi, Seung-Kil;Gu, Chi-Wuk;Ju, Heung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.630-635
    • /
    • 2015
  • A vacuum Interrupter (VI), a core part that composes the breaking part of medium-voltage vacuum circuit breaker (VCB), has the excellent insulation performance and arc-extinguishing capability. $SF_6$ gas had been used for the external insulation of VIs since the dielectric strength of $SF_6$ gas is superior to that of other insulation gases. However, because of environmental problems related with global warming, a solid-insulated technology was recently researched. The functionally graded material (FGM), as changing spatially the distribution of the relative permittivity inside an insulator, can reduce the electric field stress at the specific region. Especially, the external insulation performance of the VI with the molded FGM insulator is greatly improved as compared with that of the existing VI or the VI with a new external shield. In this paper, the effectiveness of this FGM insulator is verified by the numerical simulation.

ABLATION OF PTFE NOZZLE DRIVEN BY ARC PLASMA (아크 플라즈마에 의한 PTFE 노즐 용삭현상)

  • Lee J.C.;Kim Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.311-317
    • /
    • 2005
  • It has been the most progressive interruption technique to use the ablation gas from the surface of PTFE nozzle driven by arc plasma during switching process in $SF_6$ gas circuit breakers. This advanced interruption technique can reduce the required mechanical energy to compress and blow the gas for extinguishing the arc plasma between the electrodes due to using the ablation effect instead. In order to consider the phenomena during calculation of switching process, it is required to confirm the principles of ablation from PTFE nozzle as well as of arc plasma during switching process. In this study, we have calculated the switching process considered the ablation of PTFE nozzle driven by arc plasma using multidisciplinary simulation technique and compared the results with the data without the ablation effect. More $50\%$ difference of pressure rise inside expansion chamber has been found from the results and it should be indispensable for this type of computational work to consider and include the ablation effect of PTFE nozzle. Further study on turbulence and radiation will be followed.

  • PDF