• Title/Summary/Keyword: SET-photochemistry

Search Result 7, Processing Time 0.017 seconds

The Synthetic Potential of SET Photochemistry of Silicon-Substituted Polydonor-Linked Phthalimides

  • Yoon, Ung Chan;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1099-1114
    • /
    • 2006
  • Our studies in the area of single electron transfer (SET) photochemistry have led to the discovery of efficient processes, in which regioselective formation of carbon-centered radicals takes place by nucleophile assisted desilylation of $\alpha$-trialkylsilyl substituted ether, thioether, amine and amide centered cation radicals. The rates of bimolecular desilylation of the intermediate cation radicals exceed those of other cation radical $\alpha$-fragmentation processes (e.g.,-deprotonation). This sereves as the basis for the design of highly regioselective, SET-induced photomacrocyclization reactions of polyether, polythioether, polyamide, and polypeptide linked phthalimides. Photocyclization reactions of trimethylsilyl-terminated substrates in these families are unique in that they produce polyfunctionalized macrocyclic substances in a highly efficient and regioselective manner. In addition, our studies in this area have led to important information about the factors that govern chemical and quantum efficiencies that should be applicable to a wide variety of redox processes promoted by SET from substrates containing more than one electron donor site.

The Influence of Aminium Radical Heterolytic Fragmentation Rates on the Nature and Efficiencies of SET-Promoted Photochemical Reactions

  • Yoon, Ung-Chan;Patrick S. Mariano
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.89-96
    • /
    • 2003
  • Two important types of $\alpha$-heterolytic fragmentation reactions of aminium radicals are discussed. In these fragmentation processes, transfer of electrofugal groups from the aminium radicals to either Lowry-Bronsted or Lewis bases produces $\alpha$-amino radicals. The results of recent studies that provided key information about the dynamics of the important aminium radical fragmentation reactions, deprotonation, desilylation, are summarized. Finally, selected examples, which demonstrate how knowledge of the relative rates of aminium radical cleavage can be used to design synthetically relevant SET-promoted photocyclization reactions, are presented.

  • PDF

Comparison of Photoaddition Reactions of Aromatic Carbonyl Compounds with Silyl Thioketene Acetal vs. Silyl Ketene Acetal

  • Lee, In Ok;Yoon, Ung Chan;Cho, Dae Won
    • Rapid Communication in Photoscience
    • /
    • v.2 no.3
    • /
    • pp.76-78
    • /
    • 2013
  • Photoaddition reactions of aromatic carbonyl compounds with silyl thioketene acetals have been explored. The results of this study show that the acetonphenone react with dimethyl substituted silyl thioketene acetal competitively via either single electron transfer (SET)-desilylation or [2+2]-cycloaddition pathways to produce b-hydroxyester and oxetanes. In contrast, photochemical reactions of the benzaldehyde with dimethyl substituted silyl thioketene acetal mainly lead to the formation of oxetanes arising by [2+2] cycloaddition. A comparison of the results with those of silyl ketene acetal revealed that replacement of sulfur atom in ${\alpha}$-silyl donor substrate bring about dramatic changes in chemoselectivities as well as excited state reaction mechanism.

Photochemical Approach to the Preparation of Lariat Crown Ethers Containing Peptide Sidearms

  • Cho, Dae-Won;Quan, Chunsheng;Park, Hea-Jung;Yoon, Ung-Chan;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.503-509
    • /
    • 2011
  • New types of lariat type crown ethers containing peptide sidearms were prepared by using a novel strategy employing single electron transfer (SET)-induced photocyclization reactions of $\alpha$-silylether terminated phthalimides. Reactions of chiral substrates in this series produced diastereomeric mixtures of crown ether products as a result of the formation of new stereogenic center generation in the photocyclization process.

Studies of Silyl-Transfer Photochemical Reactions of N-[(Trimethylsilyl)alkyl]saccharins

  • Cho, Dae-Won;Oh, Sun-Wha;Kim, Dong-Uk;Park, Hea-Jung;Xue, Jin-Ying;Yoon, Ung-Chan;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2453-2458
    • /
    • 2010
  • Photochemical studies of N-[(trimethylsilyl)alkyl]saccharins were carried out to investigate their photochemical behavior. Depending on the nature of the substrate and the solvent system employed, reactions of these substances can take place by either SET-promoted silyl migration from carbon to either the amide carbonyl or sulfonyl oxygen or by a N-S homolysis route. The results of the current studies show that an azomethine ylide, arising from a SET-promoted silyl migration pathway, is generated in photoreactions of N-[(trimethylsilyl)methyl]saccharin and this intermediate reacts to give various photoproducts depending on the conditions employed. In addition, irradiation of N-[(trimethylsily)ethyl]saccharin produces an excited state that reacts through two pathways, the relative importance is governed by solvent polarity and protic nature. Finally, photoirradiation of N-[(trimethylsilyl)propyl]saccharin in a highly polar solvent system comprised of 35% aqueous MeOH gives rise to formation of a tricyclic pyrrolizidine and saccharin that generated via competitive SET-promoted silyl transfer and $\gamma$-hydrogen abstraction pathways.

Photoaddition Reactions of Silyl Ketene Acetals with Aromatic Carbonyl Compounds: A New Procedure for β-Hydroxyester Synthesis

  • Yoon, Ung-Chan;Kim, Moon-Jung;Moon, Jae-Joon;Oh, Sun-Wha;Kim, Hyun-Jin;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1218-1242
    • /
    • 2002
  • Photochemical reactions of aromatic carbonyl compounds with silyl ketene acetals have been explored. Irradiation of acetonitrile or benzene solutions containing aryl aldehydes or ketones in the presence of silyl ketene acetals is observed to promo te formation of ${\beta}-hydroxyester$, 2,2-dioxyoxetane and 3,3-dioxyoxetane products. The ratios of these photoproducts, which arise by competitive single electron transfer (SET) and classical Paterno-Buchi mechanistic pathways, is found to be dependent on the degree of methyl-substitution on the vinyl moieties of the ketene acetals in a manner which reflects expected alkyl substituent effects on the oxidation potentials of these electron rich donors. An analysis of the product distribution arising by irradiation of a solution containing butyrophenone (6) and the silyl ketene acetal 9, derived from methyl isobutyrate, provides an estimate of the rate constants for the competitive Norrish type Ⅱ, SET and Paterno-Buchi processes occuring. Finally, sequences involving silyl ketene acetal-aryl aldehyde or ketone photoaddition followed by 2,2-dioxyoxetane hydrolysis represent useful procedures for Claisen-condensation type, ${\beta}-hydroxyester$ synthesis.