DOI QR코드

DOI QR Code

Comparison of Photoaddition Reactions of Aromatic Carbonyl Compounds with Silyl Thioketene Acetal vs. Silyl Ketene Acetal

  • Lee, In Ok (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Yoon, Ung Chan (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Cho, Dae Won (Department of Chemistry, Yeungnam University)
  • Received : 2013.12.13
  • Accepted : 2013.12.17
  • Published : 2013.09.01

Abstract

Photoaddition reactions of aromatic carbonyl compounds with silyl thioketene acetals have been explored. The results of this study show that the acetonphenone react with dimethyl substituted silyl thioketene acetal competitively via either single electron transfer (SET)-desilylation or [2+2]-cycloaddition pathways to produce b-hydroxyester and oxetanes. In contrast, photochemical reactions of the benzaldehyde with dimethyl substituted silyl thioketene acetal mainly lead to the formation of oxetanes arising by [2+2] cycloaddition. A comparison of the results with those of silyl ketene acetal revealed that replacement of sulfur atom in ${\alpha}$-silyl donor substrate bring about dramatic changes in chemoselectivities as well as excited state reaction mechanism.

Keywords

References

  1. Yoshida, J.; Maekawa, T.; Murata, T.; Matsunaya, S.; Isoe, S. J. Am. Chem. Soc. 1990, 112, 1962−1970. https://doi.org/10.1021/ja00161a049
  2. Yoshida, J.; Matsunaga, S.; Murata, T.; Isoe, S. Tetrahedron 1991, 47, 615−624. https://doi.org/10.1016/S0040-4020(01)87051-4
  3. Cooper, B. E.; Owen, W. J. J. Organomet. Chem. 1971, 29, 33−40. https://doi.org/10.1016/S0022-328X(00)87488-4
  4. Pitt, C. G. J. Organomet. Chem. 1973, 61, 49−70. https://doi.org/10.1016/S0022-328X(00)86535-3
  5. Zang, X. M.; Yeh, S. -R.; Hong, S.; Freccero, M.; Albini, A.; Falvey, D. E.; Mariano, P. S. J. Am. Chem. Soc. 1994, 116, 4211−4220. https://doi.org/10.1021/ja00089a010
  6. Su, Z.; Mariano, P. S.; Falvey, D. E.; Yoon, U. C.; Oh, S. W. J. Am. Chem. Soc. 1998, 120, 10676−10686. https://doi.org/10.1021/ja981541f
  7. Cho, D. W.; Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. 2011, 44, 204−215. https://doi.org/10.1021/ar100125j
  8. Yoon, U. C.; Kim, M. J.; Moon, J. J.; Oh, S. W.; Kim, H. J.; Mariano, P. S. Bull. Korean Chem. Soc. 2002, 23, 1218−1228. https://doi.org/10.5012/bkcs.2002.23.9.1218
  9. Cho, D. W.; Lee, H. -Y.; Oh, S. W.; Choi, J. H.; Park, H. J.; Mariano, P. S.; Yoon, U. C. J. Org. Chem. 2008, 73, 4539-4547. https://doi.org/10.1021/jo800473x
  10. Oh, S. W.; Kim, J. Y.; Cho, D. W.; Choi, J. H.; Yoon, U. C. Bull. Korean Chem. Soc. 2007, 28, 629−634. https://doi.org/10.5012/bkcs.2007.28.4.629
  11. Park, H. J.; Yoon, U. C.; Lee, H. -Y.; Cho, D. W.; Mariano, P. S. J. Org. Chem. 2012, 77, 10304−10313. https://doi.org/10.1021/jo301961n