• Title/Summary/Keyword: SET/SEM

Search Result 393, Processing Time 0.026 seconds

Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS

  • X., John Britto;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.671-681
    • /
    • 2019
  • This paper examines the applicability of artificial neural network (ANN) and multivariate adaptive regression splines (MARS) to predict the compressive strength of bacteria incorporated geopolymer concrete (GPC). The mix is composed of new bacterial strain, manufactured sand, ground granulated blast furnace slag, silica fume, metakaolin and fly ash. The concentration of sodium hydroxide (NaOH) is maintained at 8 Molar, sodium silicate ($Na_2SiO_3$) to NaOH weight ratio is 2.33 and the alkaline liquid to binder ratio of 0.35 and ambient curing temperature ($28^{\circ}C$) is maintained for all the mixtures. In ANN, back-propagation training technique was employed for updating the weights of each layer based on the error in the network output. Levenberg-Marquardt algorithm was used for feed-forward back-propagation. MARS model was developed by establishing a relationship between a set of predictors and dependent variables. MARS is based on a divide and conquers strategy partitioning the training data sets into separate regions; each gets its own regression line. Six models based on ANN and MARS were developed to predict the compressive strength of bacteria incorporated GPC for 1, 3, 7, 28, 56 and 90 days. About 70% of the total 84 data sets obtained from experiments were used for development of the models and remaining 30% data was utilized for testing. From the study, it is observed that the predicted values from the models are found to be in good agreement with the corresponding experimental values and the developed models are robust and reliable.

Primary Water Stress Corrosion Crack Growth Rate Tests for Base Metal and Weld of Ni-Cr-Fe Alloy (니켈 합금 모재 및 용접재의 일차수응력부식균열 균열성장속도 시험)

  • Lee, Jong Hoon
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.33-38
    • /
    • 2019
  • Alloy 600/182 with excellent mechanical/chemical properties have been utilized for nuclear power plants. Although both alloys are known to have superior corrosion resistance, stress corrosion cracking failure has been an issue in primary water environment of nuclear power plants. Therefore, primary water stress corrosion crack (PWSCC) growth rate tests were conducted to investigate crack growth properties of Alloy 600/182. To investigate PWSCC growth rate, test facilities including water chemistry loop, autoclave, and loading system were constructed. In PWSCC crack growth rate tests, half compact-tension specimens were manufactured. These specimens were then placed inside of the autoclave connected to the loop to provide primary water environment. Tested conditions were set at temperature of $360^{\circ}C$ and pressure of 20MPa. Real time crack growth rates of specimens inside the autoclave were measured by Direct Current potential drop (DCPD) method. To confirm inter-granular (IG) crack as a characteristic of PWSCC, fracture surfaces of tested specimens were observed by SEM. Finally, crack growth rate was derived in a specific stress intensity factor (K) range and similarity with overseas database was identified.

Evaluation of ASCE 61-14 NSPs for the estimation of seismic demands in marginal wharves

  • Smith-Pardo, J. Paul.;Reyes, Juan C.;Sandoval, Juan D.;Hassan, Wael M.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.95-104
    • /
    • 2019
  • The Standard ASCE 61-14 proposes the Substitute Structure Method (SSM) as a Nonlinear Static Procedure (NSP) to estimate nonlinear displacement demands at the center of mass of piers or wharves under seismic actions. To account for bidirectional earthquake excitation according to the Standard, results from independent pushover analyses in each orthogonal direction should be combined using either a 100/30 directional approach or a procedure referred to as the Dynamic Magnification Factor, DMF. The main purpose of this paper is to present an evaluation of these NSPs in relation to four wharf model structures on soil conditions ranging from soft to medium dense clay. Results from nonlinear static analyses were compared against benchmark values of relevant Engineering Design Parameters, EDPs. The latter are defined as the geometric mean demands that are obtained from nonlinear dynamic analyses using a set of 30 two-component ground motion records. It was found that SSM provides close estimates of the benchmark displacement demands at the center of mass of the wharf structures. Furthermore, for the most critical pile connection at a landside corner of the wharf the 100/30 and DMF approaches produced displacement, curvature, and force demands that were reasonably comparable to corresponding benchmark values.

Weighted sum multi-objective optimization of skew composite laminates

  • Kalita, Kanak;Ragavendran, Uvaraja;Ramachandran, Manickam;Bhoi, Akash Kumar
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • Optimizing composite structures to exploit their maximum potential is a realistic application with promising returns. In this research, simultaneous maximization of the fundamental frequency and frequency separation between the first two modes by optimizing the fiber angles is considered. A high-fidelity design optimization methodology is developed by combining the high-accuracy of finite element method with iterative improvement capability of metaheuristic algorithms. Three powerful nature-inspired optimization algorithms viz. a genetic algorithm (GA), a particle swarm optimization (PSO) variant and a cuckoo search (CS) variant are used. Advanced memetic features are incorporated in the PSO and CS to form their respective variants-RPSOLC (repulsive particle swarm optimization with local search and chaotic perturbation) and CHP (co-evolutionary host-parasite). A comprehensive set of benchmark solutions on several new problems are reported. Statistical tests and comprehensive assessment of the predicted results show CHP comprehensively outperforms RPSOLC and GA, while RPSOLC has a little superiority over GA. Extensive simulations show that the on repeated trials of the same experiment, CHP has very low variability. About 50% fewer variations are seen in RPSOLC as compared to GA on repeated trials.

Seismic response of RC frames under far-field mainshock and near-fault aftershock sequences

  • Hosseini, Seyed Amin;Ruiz-Garcia, Jorge;Massumi, Ali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.395-408
    • /
    • 2019
  • Engineered structures built in seismic-prone areas are affected by aftershocks in addition to mainshocks. Although aftershocks generally are lower in magnitude than that of the mainshocks, some aftershocks may have higher intensities; thus, structures should be able to withstand the effect of strong aftershocks as well. This seismic scenario arises for far-field mainshock along with near-field aftershocks. In this study, four 2D reinforced concrete (RC) frames with different numbers of stories were designed in accordance with the current Iranian seismic design code. As a way to evaluate the seismic response of the case-study RC frames, the inter-story drift ratio (IDR) demand, the residual inter-story drift ratio (RIDR) demand, the Park-Ang damage index, and the period elongation ratio can be useful engineering demand parameters for evaluating their seismic performance under mainshock-aftershock sequences. The frame models were analyzed under a set of far-field mainshock, near-fault aftershocks seismic sequences using nonlinear dynamic time-history analysis to investigate the relationship among IDR, RIDR, Park-Ang damage index and period ratio experienced by the frames. The results indicate that the growth of IDR, RIDR, Park-Ang damage index, and period ratio in high-rise and short structures under near-fault aftershocks were significant. It is evident that engineers should consider the effects of near-fault aftershocks on damaged frames that experience far-field mainshocks as well.

Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces

  • Mohammadzadeh, Behzad;Choi, Eunsoo;Kim, Dongkyun
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.601-621
    • /
    • 2019
  • This study presents a comprehensive nonlinear dynamic approach to investigate the linear and nonlinear vibration of sandwich plates fabricated from functionally graded materials (FGMs) resting on an elastic foundation. Higher-order shear deformation theory and Hamilton's principle are employed to obtain governing equations. The Runge-Kutta method is employed together with the commercially available mathematical software MAPLE 14 to solve the set of nonlinear dynamic governing equations. Method validity is evaluated by comparing the results of this study and those of previous research. Good agreement is achieved. The effects of temperature change on frequencies are investigated considering various temperatures and various volume fraction index values, N. As the temperature increased, the plate frequency decreased, whereas with increasing N, the plate frequency increased. The effects of the side-to-thickness ratio, c/h, on natural frequencies were investigated. With increasing c/h, the frequencies increased nonlinearly. The effects of foundation stiffness on nonlinear vibration of the sandwich plate were also studied. Backbone curves presenting the variation of maximum displacement with respect to plate frequency are presented to provide insight into the nonlinear vibration and dynamic behavior of FGM sandwich plates.

Influence of geometry and safety factor on fatigue damage predictions of a cantilever beam

  • Pecnik, Matija;Nagode, Marko;Seruga, Domen
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • The influence of two parameters on fatigue damage predictions of a variably loaded cantilever beam has been examined. The first parameter is the geometry of the cantilever beam and the weld connecting it to a rear panel. Variables of the geometry examined here include the cantilever length, the weld width on the critical cross-section and the angle of the critical cross-section. The second parameter is the safety factor, as set out by the Eurocode 3 standard. An analytical approach has been used to calculate the stresses at the critical cross-section and standard rainflow counting has been used for the extraction of the load cycles from the load history. The results here suggest that a change in the width and angle of the critical cross-section has a non-linear impact on the fatigue damage. The results also show that the angle of the critical cross-section has the biggest influence on the fatigue damage and can cause the weld to withstand fatigue better. The second parameter, the safety factor, is shown to have a significant effect on the fatigue damage calculation, whereby a slight increase in the endurance safety factor can cause the calculated fatigue damage to increase considerably.

Relationship of the U-Factor and Chemical Structure with Applied Metal and Polymer Material Assembly in Curtain Wall Frame

  • Park, Tongso
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.450-457
    • /
    • 2021
  • From measured thermal conductivity and modeling by simulation, this study suggests that U-factors are highly related to materials used between steel and polymer. The objective and prospective point of this study are to relate the relationship between the U-factor and the thermal conductivity of the materials used. For the characterization, EDX, SEM, a thermal conductive meter, and computer simulation utility are used to analyze the elemental, surface structural properties, and U-factor with a simulation of the used material between steel and polymer. This study set out to divide the curtain wall system that makes up the envelope into an aluminum frame section and entrance frame section and interpret their thermal performance with U-factors. Based on the U-factor thermal analysis results, the target curtain wall system is divided into fix and vent types. The glass is 24 mm double glazing (6 mm common glass +12 mm Argon +6 mm Low E). The same U-factor of 1.45 W/m2·K is applied. The interpretation results show that the U-factor and total U-value of the aluminum frame section are 1.449 and 2.343 W/m2·K, respectively. Meanwhile, those of the entrance frame section are 1.449 and 2.

Factors Affecting Efficiency of Electronic Customs and Firm Performance in Vietnam

  • NGUYEN, Hang Thanh;GRANT, David Bruce;BOVIS, Christopher;NGUYEN, Thuy Thi Le;MAC, Yen Thi Hai
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.151-164
    • /
    • 2021
  • The paper identifies the enablers (drivers) and inhibitors (barriers) influencing e-customs implementation in Vietnam (known as a developing country with a lower technological environment) along with determining the impact of e-customs on firm performance. The survey was conducted with the representatives (managers) of firms in five cities and provinces dominating Vietnam's international trade. The data was analyzed using structural equation modeling (SEM). The findings show two significant drivers (enablers) - relative advantages and national culture, while compatibility and ease of use are the barriers. Previous studies showed that cultural dimensions related to 'uncertainty acceptance' and 'individualism' encourage innovation; however, this paper demonstrates that 'uncertainty avoidance' and 'collectivism' promote e-customs deployment in Vietnam. Previously, Vietnamese culture was known for scoring high on cultural dimensions related to 'power distance' and 'short-term orientation'. However, today, as an emerging country, Vietnamese has switched to 'low distance' and 'long-term orientation', especially in terms of e-customs innovation. Additionally, the paper also emphasized that e-customs implementation had a positive influence on firm performance in Vietnam. Based on the results of the paper, policy-makers can devise essential solutions to enhance e-customs implementation as well as managers of firms can set-up strategies to adapt to the modernized environment.

A Study of Factors Affecting Intention to Use Mobility Sharing Service (공유 모빌리티 서비스의 이용의도에 영향을 미치는 요인에 관한 연구)

  • Kim, Yong Seok;Pi, Chae Hee;Choi, Jeongil
    • Journal of Information Technology Services
    • /
    • v.20 no.5
    • /
    • pp.73-87
    • /
    • 2021
  • The COVID-19 pandemic has brought about many changes in our daily lives and in industries as a whole. The most notable change was the spread of the untact culture to minimize face-to-face contact. The spread of the untact culture has changed the use of public transportation. Looking at the results of previous SARS and MERS studies, it was found that as the pandemic spreads, the use of public transportation decreased. Recently, the mobility sharing service is attracting attention as a personalized means of transportation instead of public transportation. Therefore, in this study, the factors affecting the intention to use the mobility sharing service were to be identified by the actual users. In this study, economic benefit, convenience, sustainability, and sense of belonging were set as independent variables based on previous studies. In addition, the relationship between the perceived usefulness and perceived pleasure of these factors of use on intention to use was empirically analyzed through PLS-SEM. As a result of the study, it was found that economic benefits, convenience, sustainability, and sense of belongingness had a significant effect on intention to use through perceived usefulness and enjoyment. This study was meaningful in that it was verified through the study that economic benefits, convenience, sustainability, and a sense of belongingness were significant variables affecting the intention to use through usefulness and pleasure.