• Title/Summary/Keyword: SERC

Search Result 32, Processing Time 0.027 seconds

Probabilistic analysis of spectral displacement by NSA and NDA

  • Devandiran, P.;Kamatchi, P.;Rao, K. Balaji;Ravisankar, K.;Iyer, Nagesh R.
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.439-459
    • /
    • 2013
  • Main objective of the present study is to determine the statistical properties and suitable probability distribution functions of spectral displacements from nonlinear static and nonlinear dynamic analysis within the frame work of Monte Carlo simulation for typical low rise and high rise RC framed buildings located in zone III and zone V and designed as per Indian seismic codes. Probabilistic analysis of spectral displacement is useful for strength assessment and loss estimation. To the author's knowledge, no study is reported in literature on comparison of spectral displacement including the uncertainties in capacity and demand in Indian context. In the present study, uncertainties in capacity of the building is modeled by choosing cross sectional dimensions of beams and columns, density and compressive strength of concrete, yield strength and elastic modulus of steel and, live load as random variables. Uncertainty in demand is modeled by choosing peak ground acceleration (PGA) as a random variable. Nonlinear static analysis (NSA) and nonlinear dynamic analysis (NDA) are carried out for typical low rise and high rise reinforced concrete framed buildings using IDARC 2D computer program with the random sample input parameters. Statistical properties are obtained for spectral displacements corresponding to performance point from NSA and maximum absolute roof displacement from NDA and suitable probability distribution functions viz., normal, Weibull, lognormal are examined for goodness-of-fit. From the hypothesis test for goodness-of-fit, lognormal function is found to be suitable to represent the statistical variation of spectral displacement obtained from NSA and NDA.

Prediction of negative peak wind pressures on roofs of low-rise building

  • Rao, K. Balaji;Anoop, M.B.;Harikrishna, P.;Rajan, S. Selvi;Iyer, Nagesh R.
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.623-647
    • /
    • 2014
  • In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.

Behavior of light weight sandwich panels under out of plane bending loading

  • Ganapathi, S. Chitra;Peter, J. Annie;Lakshmanan, N.;Iyer, N.R.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.775-789
    • /
    • 2016
  • This paper presents the flexural behavior & ultimate strength performance of innovative light weight sandwich panels of size $3{\times}1.2m$ with two different solidity ratios viz. 0.5 and 0.33 under out of plane bending load. From the experimental studies, it is observed that the flexural strength and the stiffness are increased by about 46% and five folds for lesser solidity ratio case. From the measured strains of the shear connectors, full shear transfer between the concrete wythes is observed. The yielding occurred approximately at 4% and 0.55% of the ultimate deformation for 100 mm & 150 mm thick panels, which shows the large ductility characteristics of the panels. From the study, it is inferred that the light weight sandwich panels behave structurally in a very similar manner to reinforced concrete panels. Further from the numerical study, it is observed that the numerical values obtained by FE analysis are in good agreement with the experimental observations.

Experimental, numerical and analytical studies on a novel external prestressing technique for concrete structural components

  • Lakshmanan, N.;Saibabu, S.;Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Jayaraman, R.;Senthil, R.
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.41-57
    • /
    • 2009
  • This paper presents the details of a novel external prestressing technique for strengthening of concrete members. In the proposed technique, transfer of external force is in shear mode on the end block thus creating a complex stress distribution and the required transverse prestressing force is lesser compared to conventional techniques. Steel brackets are provided on either side of the end block for transferring external prestressing force and these are connected to the anchor blocks by expansion type anchor bolts. In order to validate the technique, an experimental investigation has been carried out on post-tensioned end blocks. Performance of the end blocks have been studied for design, cracking and ultimate loads. Slip and slope of steel bracket have been recorded at various stages during the experiment. Finite element analysis has been carried out by simulating the test conditions and the responses have been compared. From the analysis, it has been observed that the computed slope and slip of the steel bracket are in good agreement with the corresponding experimental observations. A simplified analytical model has been proposed to compute load-deformation of the loaded steel bracket with respect to the end block. Yield and ultimate loads have been arrived at based on force/moment equilibrium equations at critical sections. Deformation analysis has been carried out based on the assumption that the ratio of axial deformation to vertical deformation of anchor bolt would follow the same ratio at the corresponding forces such as yield and ultimate. It is observed that the computed forces, slip and slopes are in good agreement with the corresponding experimental observations.

Comparative study on one and two-path single energy recovery circuit for plasma display panel (PDP)

  • Yi, Kang-Hyun;Choi, Seong-Wook;Moon, Gun-Woo;Park, Jung-Pil;Jung, Nam-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.256-259
    • /
    • 2006
  • Comparison of one two-path single energy recovery circuit for plasma display panel (PDP) is shown in this paper. A single energy recovery circuit (SERC) is proposed to reduce cost for manufacturing PDP and there are two ways, one and two-path, in driving this circuit. Compared with one-path SERC, there are low power consumption, low surge current and high performance in two-path SERC. The results will be shown with 42-inch HD panel.

  • PDF

Passivation Properties of Phosphorus doped Amorphous Silicon Layers for Tunnel Oxide Carrier Selective Contact Solar Cell (터널 산화막 전하선택형 태양전지를 위한 인 도핑된 비정질 실리콘 박막의 패시베이션 특성 연구)

  • Lee, Changhyun;Park, Hyunjung;Song, Hoyoung;Lee, Hyunju;Ohshita, Yoshio;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.125-129
    • /
    • 2019
  • Recently, carrier-selective contact solar cells have attracted much interests because of its high efficiency with low recombination current density. In this study, we investigated the effect of phosphorus doped amorphous silicon layer's characteristics on the passivation properties of tunnel oxide passivated carrier-selective contact solar cells. We fabricated symmetric structure sample with poly-Si/SiOx/c-Si by deposition of phosphorus doped amorphous silicon layer on the silicon oxide with subsequent annealing and hydrogenation process. We varied deposition temperature, deposition thickness, and annealing conditions, and blistering, lifetime and passivation quality was evaluated. The result showed that blistering can be controlled by deposition temperature, and passivation quality can be improved by controlling annealing conditions. Finally, we achieved blistering-free electron carrier-selective contact with 730mV of i-Voc, and cell-like structure consisted of front boron emitter and rear passivated contact showed 682mV i-Voc.

Antioxidant and anti-inflammatory effects of seed ethanol extracts of Rubus coreanus miquel (복분자 종자 추출물의 항산화 및 항염증 효과)

  • Hwang, Jin-Woo;Kang, Hyun;Lee, Sung-Gyu
    • Journal of Plant Biotechnology
    • /
    • v.49 no.2
    • /
    • pp.155-161
    • /
    • 2022
  • This study investigated the antioxidant and anti-inflammatory effects of seed ethanol extracts from Rubus coreanus Miquel (SERC). To investigate the antioxidant activity, total polyphenol and flavonoid content, ABTS and DPPH radical scavenging activity, and reducing power were measured. The total polyphenol and flavonoid contents in seed ethanol extracts of R. coreanus Miq. were 4.09 ㎍ gallic acid equivalents (GAE)/mg and 16.25 ㎍ quercetin equivalents (QE)/mg, respectively. DPPH and ABTS radical scavenging activity showed concentration-dependent scavenging activity, and the RC50 values of SERC were 26.68 ㎍/mL and 39.30 ㎍/mL, respectively. Moreover, the ferric reducing antioxidant power (FRAP) assay was performed to assess the reducing power, and SERC showed 0.61 ± 0.01 mM FeSO4 E/mg. To measure the anti-inflammatory effect, the cytotoxicity and nitric oxide (NO) production inhibitory efficacy in RAW 264.7 cells was confirmed. SERC showed a NO production inhibitory effect at 500 ㎍/mL without cytotoxicity. As a result of verifying the antioxidant and anti-inflammatory activity using SERC, its potential as an antioxidant and anti-inflammatory material was confirmed.

Changes of Surface $M_2$ Currents as Observed by HF Radar Before and After Saemangeum Fourth Tidal Dyke Closing (새만금 4호 방조제 완성 전.후 HF 레이다로 관측된 표층 $M_2$ 조류의 변화)

  • Kim Chang-Soo;Lee Sang-Ho;Son Young-Tae;Kwon Hyo-Keun;Lee Kwang-Hee;Kim Young-Bae;Jeong Ou-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.37-48
    • /
    • 2006
  • HF radar-derived current data obtained in 2002 and 2004 are analyzed to examine the effects of the completion of the Saemangeum 4th tidal dyke in June 2003, connecting Gogunsan-Gundo and Bieung-Do, on the coastal surface $M_2$ current pattern. Comparison between the currents by HF radar and current meter mooring showed good agreements. Counterclockwise rotation of the $M_2$ current in the observed area did not change with the dyke construction. Strong westward ebb jet from the gap of the dyke was observed in 2002 but disappeared in 2004. The complete closing of the dyke gap caused the current speed increase around the mouth of the Kem River estuary, decrease around Gogunsan-Gundo and the dyke, the changes in the direction of maximum current to north-ward from eastward and the delay of the maximum flood current occurrence around Gogunsan-Gundo and the dyke. Around Yeon-Do, the maximum flood current directed more clockwise and occurred rather earlier. These changes of the $M_2$ current ellipse characteristics imply that the effects of the dyke construction reached the area connecting Mal-Do and Yeun-Do.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.