• 제목/요약/키워드: SENTINEL-2 SATELLITE IMAGE

검색결과 59건 처리시간 0.029초

Sentinel-2 위성영상과 SRTM DEM을 활용한 연안습지 탐지: 서해안 곰소만을 사례로 (Detection of the Coastal Wetlands Using the Sentinel-2 Satellite Image and the SRTM DEM Acquired in Gomsoman Bay, West Coasts of South Korea)

  • 정윤재;김경섭;박인선
    • 한국지리정보학회지
    • /
    • 제24권2호
    • /
    • pp.52-63
    • /
    • 2021
  • 기존 연구에서는 연안습지를 탐지하기 위해 위성/항공 영상의 다중분광 밴드로부터 산출한 식생지수 또는 토지피복도를 활용하였으나, 단일 센서만을 활용할 경우 토지피복정보와 지형정보를 동시에 고려하는 것에 한계가 있어 높은 정확도의 연안습지 탐지 및 대규모 연안습지 관리 업무 수행에 많은 지장을 초래하였다. 본 연구에서는 우리나라 서해안 곰소만 지역을 촬영한 Sentinel-2 위성영상의 다중분광 밴드와 디지털 지형 모델인 SRTM(Shuttle Radar Topography Mission) DEM(Digital Elevation Model)을 사용하여 서해안 곰소만의 대규모 연안습지를 다음의 과정을 통해 탐지하였다. 우선 Sentinel-2 위성영상의 Green 및 근적외선 밴드를 활용하여 정규수분지수 영상을 제작하였다. 그리고 정규수분지수 영상에서 픽셀의 밝기값 0.2를 임계치로 설정하여 물과 육지를 구분하는 이진화 영상을 제작하였으며, SRTM DEM에서 픽셀의 밝기값 0을 임계치로 설정하여 해수면 아래와 해수면 위를 구분하는 이진화 영상을 제작하였다. 최종적으로는 두 장의 이진화 영상에 중첩 분석을 적용하여 이진화 영상 기반 연안습지 지도를 제작하였다. 본 연구에서 제안한 기술을 활용하여 제작한 이진화 영상 기반 연안습지 지도의 정확도는 94%로서 매우 높은 결과를 보여주었으며, 연안습지가 아닌 내륙습지, 산지습지 등은 탐지되지 않아서 연안습지 관리 업무에 매우 효과적으로 활용될 수 있음을 확인하였다.

고해상도 광학 위성영상을 이용한 시공간 자료 융합의 적용성 평가: KOMPSAT-3A 및 Sentinel-2 위성영상의 융합 연구 (Applicability Evaluation of Spatio-Temporal Data Fusion Using Fine-scale Optical Satellite Image: A Study on Fusion of KOMPSAT-3A and Sentinel-2 Satellite Images)

  • 김예슬;이광재;이선구
    • 대한원격탐사학회지
    • /
    • 제37권6_3호
    • /
    • pp.1931-1942
    • /
    • 2021
  • 최근 고해상도 광학 위성영상의 활용성이 강조되면서 이를 이용한 지표 모니터링 연구가 활발히 수행되고 있다. 그러나 고해상도 위성영상은 낮은 시간 해상도에서 획득되기 때문에 그 활용성에 한계가 있다. 이러한 한계를 보완하기 위해 서로 다른 시간 및 공간 해상도를 갖는 다중 위성영상을 융합해 높은 시공간 해상도의 합성 영상을 생성하는 시공간 자료 융합을 적용할 수 있다. 기존 연구에서는 중저해상도의 위성영상을 대상으로 시공간 융합 모델이 개발되어 왔기 때문에 고해상도 위성영상에 대한 기개발된 융합 모델의 적용성을 평가할 필요가 있다. 이를 위해 이 연구에서는 KOMPSAT-3A 영상과 Sentinel-2 영상을 대상으로 기개발된 시공간 융합 모델의 적용성을 평가하였다. 여기에는 예측을 위해 사용하는 정보가 다른 Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM)과 Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM)을 적용하였다. 연구 결과, 시간적으로 연속적인 반사율 값을 결합하는 STGDFM의 예측 성능이 ESTARFM 보다 높은 것으로 나타났다. 특히 KOMPSAT 영상의 낮은 시간 해상도로 같은 시기에서 KOMPSAT 및 Sentinel-2 영상을 동시에 획득하기 어려운 경우, STGDFM의 예측 성능 향상이 더욱 크게 나타났다. 본 실험 결과를 통해 연속적인 시간 정보를 결합해 상대적으로 높은 예측 성능을 가지는 STGDFM을 이용해 낮은 재방문 주기로 인한 고해상도 위성영상의 한계를 보완할 수 있음을 확인하였다.

위성영상을 이용한 저수지 수체면적 변화 분석 (Analysis of Water Surface Area Change in Reservoir Using Satellite Images)

  • 김주훈;김동필
    • 대한토목학회논문집
    • /
    • 제44권5호
    • /
    • pp.629-636
    • /
    • 2024
  • 본 연구는 위성영상을 이용하여 국내의 검증 가능한 지역의 저수지 수표면 변화를 모니터링하고 저수지 수표면적과 저수량 분석을 수행하는 것을 목적으로 하였다. 본 연구의 대상지역은 충청권 일부 지역으로 용수를 공급하고 있는 금강의 대청댐을 대상으로 하였다. 위성영상의 여러 관측센서 중 Sentinel-1(SAR-C) 영상과 Sentinel-2(MSI)의 광학영상을 이용하여 수체를 탐지하는 연구를 진행하였다. 지상관측 자료인 저수지의 저수량과 추출한 수체면적과의 상관관계를 분석하였다. 분석 결과 Sentinel-1(SAR) 영상을 이용한 수체면적과 일단위 저수량과의 결정계수(R2)는 0.9242로 분석되었고, Sentinel-2의 MSI 광학영상을 이용한 분석에서도 0.8995로 상관관계가 높은 것으로 분석되었다. 또한 저수량과 수체면적과의 관계식을 이용하여 영상으로부터 추출한 수체면적의 저수량이 실제 저수량과 유사한 형태의 수문곡선을 나타내는 것으로 분석되었다. 본 연구를 통해 얻어진 결과는 향후 북한 지역과 같이 관측의 밀도가 낮고 접근이 불가한 지역에 위성영상 자료를 활용하여 주요 댐 저수지 수체면적에 대한 연간변화와 장기간의 추세를 분석하는 연구로 진행할 계획이다.

Alsat-2B/Sentinel-2 Imagery Classification Using the Hybrid Pigeon Inspired Optimization Algorithm

  • Arezki, Dounia;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.690-706
    • /
    • 2021
  • Classification is a substantial operation in data mining, and each element is distributed taking into account its feature values in the corresponding class. Metaheuristics have been widely used in attempts to solve satellite image classification problems. This article proposes a hybrid approach, the flower pigeons-inspired optimization algorithm (FPIO), and the local search method of the flower pollination algorithm is integrated into the pigeon-inspired algorithm. The efficiency and power of the proposed FPIO approach are displayed with a series of images, supported by computational results that demonstrate the cogency of the proposed classification method on satellite imagery. For this work, the Davies-Bouldin Index is used as an objective function. FPIO is applied to different types of images (synthetic, Alsat-2B, and Sentinel-2). Moreover, a comparative experiment between FPIO and the genetic algorithm genetic algorithm is conducted. Experimental results showed that GA outperformed FPIO in matters of time computing. However, FPIO provided better quality results with less confusion. The overall experimental results demonstrate that the proposed approach is an efficient method for satellite imagery classification.

Performance of Support Vector Machine for Classifying Land Cover in Optical Satellite Images: A Case Study in Delaware River Port Area

  • Ramayanti, Suci;Kim, Bong Chan;Park, Sungjae;Lee, Chang-Wook
    • 대한원격탐사학회지
    • /
    • 제38권6_4호
    • /
    • pp.1911-1923
    • /
    • 2022
  • The availability of high-resolution satellite images provides precise information without direct observation of the research target. Korea Multi-Purpose Satellite (KOMPSAT), also known as the Arirang satellite, has been developed and utilized for earth observation. The machine learning model was continuously proven as a good classifier in classifying remotely sensed images. This study aimed to compare the performance of the support vector machine (SVM) model in classifying the land cover of the Delaware River port area on high and medium-resolution images. Three optical images, which are KOMPSAT-2, KOMPSAT-3A, and Sentinel-2B, were classified into six land cover classes, including water, road, vegetation, building, vacant, and shadow. The KOMPSAT images are provided by Korea Aerospace Research Institute (KARI), and the Sentinel-2B image was provided by the European Space Agency (ESA). The training samples were manually digitized for each land cover class and considered the reference image. The predicted images were compared to the actual data to obtain the accuracy assessment using a confusion matrix analysis. In addition, the time-consuming training and classifying were recorded to evaluate the model performance. The results showed that the KOMPSAT-3A image has the highest overall accuracy and followed by KOMPSAT-2 and Sentinel-2B results. On the contrary, the model took a long time to classify the higher-resolution image compared to the lower resolution. For that reason, we can conclude that the SVM model performed better in the higher resolution image with the consequence of the longer time-consuming training and classifying data. Thus, this finding might provide consideration for related researchers when selecting satellite imagery for effective and accurate image classification.

Supervised classification for greenhouse detection by using sharpened SWIR bands of Sentinel-2A satellite imagery

  • Lim, Heechang;Park, Honglyun
    • 한국측량학회지
    • /
    • 제38권5호
    • /
    • pp.435-441
    • /
    • 2020
  • Sentinel-2A satellite imagery provides VNIR (Visible Near InfraRed) and SWIR (ShortWave InfraRed) wavelength bands, and it is known to be effective for land cover classification, cloud detection, and environmental monitoring. Greenhouse is one of the middle classification classes for land cover map provided by the Ministry of Environment of the Republic of Korea. Since greenhouse is a class that has a lot of changes due to natural disasters such as storm and flood damage, there is a limit to updating the greenhouse at a rapid cycle in the land cover map. In the present study, we utilized Sentinel-2A satellite images that provide both VNIR and SWIR bands for the detection of greenhouse. To utilize Sentinel-2A satellite images for the detection of greenhouse, we produced high-resolution SWIR bands applying to the fusion technique performed in two stages and carried out the detection of greenhouse using SVM (Support Vector Machine) supervised classification technique. In order to analyze the applicability of SWIR bands to greenhouse detection, comparative evaluation was performed using the detection results applying only VNIR bands. As a results of quantitative and qualitative evaluation, the result of detection by additionally applying SWIR bands was found to be superior to the result of applying only VNIR bands.

Sentinel-2 위성영상을 활용하여 국가하천망 제작을 위한 자동화 기술 개발 -서울시 한강을 사례로- (Development of the Automatic Method for Detecting the National River Networks Using the Sentinel-2 Satellite Imagery -A Case Study for Han River, Seoul-)

  • 김선우;권용하;정연인;정윤재
    • 한국지리정보학회지
    • /
    • 제25권2호
    • /
    • pp.88-99
    • /
    • 2022
  • 하천망은 하천 관리에 있어서 필수적인 지형특성 중 하나이다. 기존에 현장조사를 통해 구축되었던 하천망은 최근에 원격탐사 자료를 활용하여 효율적으로 구축되기 시작하였다. 교량 등 장애물이 많은 도시 하천망의 경우, 하천 내 장애물 제거에 어려움이 있어 온전한 하천망을 구축한 사례는 드물다. 본 연구는 Sentinel-2 위성영상을 활용하여 도시 내 하천에 존재하는 장애물을 제거하고 경계선이 보전된 온전한 하천망을 자동으로 추출하는 기술을 개발하였다. 우선 Sentinel-2 위성영상의 다중분광 밴드를 활용하여 정규수분지수 영상을 제작하고 수체와 그 외 지역을 구분할 수 있는 이진화 영상을 제작하였다. 그리고 모폴로지 연산을 이진화 영상에 적용하여 장애물이 제거되고 경계선이 보전된 온전한 하천망을 추출하였다. 본 연구에서 개발한 기술을 서울시 한강에 적용한 결과, 경계선은 보존되고 교량 등 장애물이 제거된 온전한 하천망을 추출할 수 있었다.

Google Earth Engine 제공 Sentinel-1과 Sentinel-2 영상을 이용한 지표 토양수분도 제작 실험 (An Experiment for Surface Soil Moisture Mapping Using Sentinel-1 and Sentinel-2 Image on Google Earth Engine)

  • 이지현 ;김광섭 ;이기원
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.599-608
    • /
    • 2023
  • 수문학, 기상학 및 농업과 같은 응용 분야에서 위성 기반 토양 수분 정보에 대한 관심이 높아지면서 다양한 해상도에서 토양수분도를 제작하는 방법의 개발과 사례 연구는 위성 정보 활용의 주요 주제 중 하나로 대두되고 있다. 이 연구는 Google Earth Engine (GEE)에서 제공하는 Sentinel-과 Sentinel-2 공개 자료를 적용하여 토양수분도 제작 결과를 예시하였다. 토양수분도는 synthetic aperture radar (SAR) 영상과 광학 영상과 융합하여 산출하였다. SAR 영상은 GEE에서 제공하는 Sentinel-1 위성의 후반 산란 계수 analysis ready data (ARD)자료와 Sentinel-2에서 계산한 정규식생지수와 함께 Environmental Systems Research Institute (ESRI)의 토지 피복자료를 사용하였다. 호주 빅토리아 주에 위치한 연구지역을 대상으로 토양수분도를 제작하였으며, 기존 연구에서 발표된 현장 측정값과 비교 분석하였다. 현장 측정값을 기준으로 실험 결과의 정확도를 비교한 결과로 결괏값은 기준 값과 4-10%p 차이를 보이는 유의미한 범위의 일치도를 보이고, 위성 기반 토양수분도와는 0.5-2%p의 높은 일치도를 보이는 것으로 나타났다. 따라서 지역의 지표 특성에 따라 고해상도의 토양수분도가 필요한 지역은 GEE를 통하여 제공되는 공개 자료와 이 연구에서 적용한 알고리즘으로 토양수분도의 제작이 가능할 것으로 생각한다.

KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합 (Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery)

  • 김태헌;윤예린;이창희;한유경
    • 대한원격탐사학회지
    • /
    • 제38권6_4호
    • /
    • pp.1901-1910
    • /
    • 2022
  • 뉴스페이스(new space) 시대가 도래함에 따라 국내 KOMPSAT-3·3A 위성영상과 해외 위성영상과의 글로벌 융합활용 기술확보가 대두되고 있다. 일반적으로 다중센서 위성영상은 취득 당시의 다양한 외부요소로 인해 영상 간 상대적인 기하오차(relative geometric error)가 발생하며, 이로 인해 위성영상 산출물의 품질이 저하된다. 따라서 본 연구에서는 KOMPSAT-3·3A 위성영상과 해외 위성영상 간 존재하는 상대기하오차를 최소화하기 위한 정밀영상정합(fine-image registration) 방법론을 제안한다. KOMPSAT-3·3A 위성영상과 해외 위성영상 간 중첩영역을 선정한 후 두 영상 간 공간해상도를 통일한다. 이어서, 특징 및 영역 기반 정합기법을 결합한 형태의 하이브리드(hybrid) 정합기법을 이용하여 정합점(tie-point)을 추출한다. 그리고 피라미드(pyramid) 영상 기반의 반복적 정합을 수행하여 정밀영상정합을 수행한다. KOMPSAT-3·3A 위성영상과 Sentinel-2A 및 PlanetScope 영상을 이용하여 제안기법의 정확도 및 성능을 평가하였다. 그 결과, Sentienl-2A 영상 기준 평균 Root Mean Square Error (RMSE) 1.2 pixels, PlanetScope 영상 기준 평균 RMSE 3.59 pixels의 정확도가 도출되었다. 이를 통해 제안기법을 이용하여 효과적으로 정밀영상정합을 수행할 수 있을 것으로 사료된다.

Sentinel-2 위성영상을 활용한 농업용 저수지 가용수량 추정 (Estimation of Water Storage in Small Agricultural Reservoir Using Sentinel-2 Satellite Imagery)

  • 이희진;남원호;윤동현;장민원;홍은미;김태곤;김대의
    • 한국농공학회논문집
    • /
    • 제62권6호
    • /
    • pp.1-9
    • /
    • 2020
  • Reservoir storage and water level information is essential for accurate drought monitoring and prediction. In particular, the agricultural drought has increased the risk of agricultural water shortages due to regional bias in reservoirs and water supply facilities, which are major water supply facilities for agricultural water. Therefore, it is important to evaluate the available water capacity of the reservoir, and it is necessary to determine the water surface area and water capacity. Remote sensing provides images of temporal water storage and level variations, and a combination of both measurement techniques can indicate a change in water volume. In areas of ungauged water volume, satellite remote sensing image acts as a powerful tool to measure changes in surface water level. The purpose of this study is to estimate of reservoir storage and level variations using satellite remote sensing image combined with hydrological statistical data and the Normalized Difference Water Index (NDWI). Water surface areas were estimated using the Sentinel-2 satellite images in Seosan, Chungcheongnam-do from 2016 to 2018. The remote sensing-based reservoir storage estimation algorithm from this study is general and transferable to applications for lakes and reservoirs. The data set can be used for improving the representation of water resources management for incorporating lakes into weather forecasting models and climate models, and hydrologic processes.