• Title/Summary/Keyword: SENSOR - MCU

Search Result 136, Processing Time 0.027 seconds

A Multi-Protocol Gateway Middleware Design on Ubiquitous Sensor Networks (USN 기반 다중 프로토콜 게이트웨이 미들웨어 설계)

  • Hong, Sung-Il;Lin, Chi-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.11
    • /
    • pp.895-901
    • /
    • 2013
  • In this paper we propose design of a multi-protocol gateway middleware based on USN. The proposed multi-protocol gateway middleware defined the transmit messages format, and were used the USN module interface protocol for connect to external application MCU using the UART. In this case, the gateway was checks the communication state of Zigbee module with settings information, and setting Zigbee serial PDU format. The experimental results of the proposed multi-protocol gateway middleware were proved the efficiency of integrate protocol gateway to use the multi-protocol gateway than gateway to using the repeater through the power control and communications a controlled experiment.

Exploitation of IP-based Intelligent Networked Measuring and Control Device and System

  • Liu, Gui-Xiong;Luo, Yi;Fang, Xiao-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1235-1239
    • /
    • 2003
  • On the base of network frame and protocol system of Ethernet the networked sensing technology based on Ethernet is studied and the design principles of industrial Ethernet measurement of control system is put forward, and the general structure model is built in the paper. An eight-bit economical MCU scheme is proposed, and a general scheme of distributed intelligent networked measuring and control equipment based on TCP/IP is designed too. A compact TCP/IP protocol stack are successfully implemented in eight-bit MCU. With C51 program language, method of modularized programming is applied in soft design. The problem of in-system modifying measuring and control strategy of its system is solved successfully by assigning memory dynamically and saving parameter with EEPROM, and it makes the intelligent networked measurement and control system can explain and analyses control strategy from PC. Experiment result shows that, the research of intelligent networked measurement and control equipment and system base on TCP/IP is successful, with flexible network, convenient usage, and good commonality.

  • PDF

A Low Power Consumption Management Scheme Based on Touch & Play for Smart Memory Tags (스마트 메모리 태그를 위한 Touch & Play 기반 저전력 소모 관리 기법)

  • Yun, Young-Sun;Ha, Sunju;Son, Kyung A;Eun, Seongbae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.3
    • /
    • pp.131-138
    • /
    • 2017
  • QR/NFC tags have been utilized in various fields like exhibition, museum, and so on, but they have a drawback that they are read-only fundamentally. We devise a novel device called a smart memory tag (below mem-tag) which is supplemented with the write function through combining a flash memory into a NFC tag. A mem-tag is composed of an NFC tag, an MCU, a flash memory, a bluetooth module, and a battery, and is inter-operating with smartphones via bluetooth communication. It can be used in a bulletin board to support writing replies and in a check-in service to verify the presence of the site. What matters is that users' inter-operations are borne to be asynchronous, which leads to the energy consumption to wait for users' actions. Sleep mechanisms and asynchronous MAC protocols used in ubiquotous sensor networks cannot avoid the consumption of battery. In this paper, we propose a touch and play scheme for minimizing the consumption of battery that the MCU wakes up and PLAY when a user TOUCH the mem-tag. We implemented the system to show that our scheme lets the mem-tag work 50 times longer than the sleep and wake-up scheme.

A Study on LED Light Dimming using Power Device (전력소자를 사용한 LED 조명 디밍에 관한 연구)

  • Kim, Dong-Shik;Chai, Sang-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.89-95
    • /
    • 2014
  • An LED lighting which adjusted brightness according to the surround ambient implemented using PWM technology and power devices. To measure the brightness of surround ambient a CdS sensor was used. A control board for the generation of the PWM signal was made using a MCU and duty ratio was controlled according to light intensity of surround ambient of the system. To drive the LED lamps which require high-voltage and high-current power devices were used for switching the DC power supply. Measurement results show that the IGBT is excellent as only lineality but the PowerBJT is more good to consider to efficiency and cost.

Development of a Deep Learning Prediction Model to Recognize Dangerous Situations in a Gas-use Environment (가스 사용 환경에서의 위험 상황 인지를 위한 딥러닝 예측모델 개발)

  • Kang, Byung Jun;Cho, Hyun-Chan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.132-135
    • /
    • 2022
  • Recently, with the development of IoT communication technology, products and services that detect and inform the surrounding environment under the name of smart plugs are being developed. In particular, in order to prepare for fire or gas leakage accidents, products that automatically close and warn when abnormal symptoms occur are used. Most of them use methods of collecting, analyzing, and processing information through networks. However, there is a disadvantage that it cannot be used when the network is temporarily in a failed state. In this paper, sensor information was analyzed using deep learning, and a model that can predict abnormal symptoms was learned in advance and applied to MCU. The performance of each model was evaluated by developing firmware that can judge and process on its own regardless of network and applying a predictive model to the MCU after 3 to 120 seconds.

Acoustic Event Detection and Matlab/Simulink Interoperation for Individualized Things-Human Interaction (사물-사람 간 개인화된 상호작용을 위한 음향신호 이벤트 감지 및 Matlab/Simulink 연동환경)

  • Lee, Sanghyun;Kim, Tag Gon;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.4
    • /
    • pp.189-198
    • /
    • 2015
  • Most IoT-related approaches have tried to establish the relation by connecting the network between things. The proposed research will present how the pervasive interaction of eco-system formed by touching the objects between humans and things can be recognized on purpose. By collecting and sharing the detected patterns among all kinds of things, we can construct the environment which enables individualized interactions of different objects. To perform the aforementioned, we are going to utilize technical procedures such as event-driven signal processing, pattern matching for signal recognition, and hardware in the loop simulation. We will also aim to implement the prototype of sensor processor based on Arduino MCU, which can be integrated with system using Arduino-Matlab/Simulink hybrid-interoperation environment. In the experiment, we use piezo transducer to detect the vibration or vibrates the surface using acoustic wave, which has specific frequency spectrum and individualized signal shape in terms of time axis. The signal distortion in time and frequency domain is recorded into memory tracer within sensor processor to extract the meaningful pattern by comparing the stored with lookup table(LUT). In this paper, we will contribute the initial prototypes for the acoustic touch processor by using off-the-shelf MCU and the integrated framework based on Matlab/Simulink model to provide the individualization of the touch-sensing for the user on purpose.

Balance Control of Drone using Adaptive Two-Track Control (적응적 Two-Track 기술을 이용한 드론의 균형 제어)

  • Kim, Jang-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.666-671
    • /
    • 2019
  • The flight controller(FC) used in small-sized drone was developed as simple structure does not perform complex operations because it uses different MCU with large-sized drone. Also, the balance control of small-sized drone should be simpler than Kalman filter using complex filter and the method using Complementary filter has relatively more operations. So, the method to realize the balance control on small-sized drone effectively using two-track control operating as proper method for above is suggested in this research. This method is a system maintaining effective balance with simple structure and less operations by operating adaptively for the unbalance of the drone with the acceleration sensor with the advantage which performing accurate correction by data processing for long term change and gyroscope sensor maintaining the balance of the drone by data processing for short term change. It is confirmed that stable operation was performed mostly based on the test result for repeatable test more than 100 times using two-track control and it maintained normal state operation more than 98% excluding the difficulty of maintaining normal operation when meets sudden and rapid wind yet.

Integrated Command System for Firefight Satety in Special Disaster Area (특수재난현장 진압대원의 안전을 위한 통합 지휘시스템에 관한 연구)

  • Roh, Tae-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.98-108
    • /
    • 2015
  • An integrated command system is critical for the safety of firefighters and effective work in the headquarters of a special disaster areas such as natural disaster or large man-made hazard. The integrated command system requires environmental information such as temperature, humidity, and $CO_2$ levels, as well as personal physical information such as pulse and air respirator levels. An Analog to Digital Converter (ADC) chip converts sensed information into digital signals, and a Micro Controller Unit (MCU) transmits the digital signals to a transmission board using serial communication through a Serial Peripheral Interface (SPI). The digital signals are saved in a transmission board and transmitted to the integrated command system by a Radio Frequency (RF) unit. The location of fire-fighters in a building are determined using a gyro sensor and an inertial sensor. The collected information is applied to the integrated command system for firefighter safety and to ensure that they can effectively carry out their duties. Tthis study theoretically and experimentally investigated the technologies of RF transmission, indoor position, and an integrated command system that supports decision making using the transmitted information.

A Study on Neuroactive Response Sensing Platform after Injection of Muscular Relaxants (근 이완제 투여에 따른 신경 자극 반응 감지 플랫폼에 관한 연구)

  • Kim, Woo-Ram;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.331-334
    • /
    • 2011
  • This is a study about a platform realization measuring the extent of reaction in nerve, as giving a electrical impulse on a nerve pulp regulating a function of muscle, about a measurement of nerve reaction in the amount of current, the lasting time of current, and the position of electrode from a electrical impuls.The position of an electrode in a electrical nerve impuls have nothing to do with all nerves from exercise to all things. There is the Single Twitch Stimulation(STS), Train-of-four(TOF), and Double Burst Stimulation(DBS) in the form of nerve stimulation. This report is needed for selecting MCU of low electric power for a base in embedded system and measuring the extent of reaction after making a sensor interface to know sensitivity of measuring sensor in basic reaction of nerve impuls. The platform is realized to select a high efficiency AD Convertor for raising accuracy in measured data. As the platform in this report was developed for a medical appliances, it was designed to consider user safety in electric power Isolation when making electric power circuit.

  • PDF

A Study on the Stabilization of a System for Big Data Transmission of Intelligent Ventilation Window based on Sensor and MCU (센서 및 MCU기반 지능형 환기창 빅데이터전송용 시스템 안정화에 관한 연구)

  • Ryoo, Hee-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.551-558
    • /
    • 2021
  • In this paper, we made the integrated intelligent air ventilation of the actuator module that can be remotely controlled based on IoT and sensors. we implemented a ventilation window system by configuring an algorithm design and a driving circuit to control the operation of the actuator to open and close the ventilation port based on a predetermined number of data that detects indoor gas/CO2/humidity temperature and outdoor fine dust related indoor/outdoor environment. It is difficult to store, manage, and analyze data due to the large number of sensors and conditions for the transmission data of indoor air circulation module. The remote monitoring and remote wireless control screens were constructed to automate the separation and operation conditions by extracting and managing the state. We apply MQTT to enhance big data transmission and construct the system using Rocket MQ to ensure safe transmission of operational big data against system errors.