• Title/Summary/Keyword: SEM EDAX

Search Result 88, Processing Time 0.027 seconds

A Study on the Friction and Wear Characteristics of $Al_2O_3-TiC$ ($Al_2O_3-TiC$의 마찰 및 마모특성에 관한 연구)

  • 조구환;이기현;김경웅
    • Tribology and Lubricants
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 1992
  • Friction and wear behavior of hot isostatic pressed $Al_2O_3-TiC$ was experimentally examined. Pin-on-disk type friction and wear apparatus was designed and manufactured for the experiment. The experiments were conducted under unlubricated sliding motion in both low and high humidity for three kinds of sliding speed. $Al_2O_3-TiC$ and bearing steel were used as counterface materials. Friction coefficient, wear rate, and surface roughness were measured. Wear surface and wear debris were observed through optical microscope and SEM and analyzed by EDAX. The results showed that the counterface materials, the sliding speed, and the moisture at the sliding surface have significant influence on the friction coefficient and wear rate of $Al_2O_3-TiC$.

수용액기반 Cu-In-Se 나노입자 합성

  • Choe, Yeong-U;Lee, Dong-Uk;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.368-368
    • /
    • 2011
  • I-III-VI족 화합물반도체인 CuInSe2(CIS)는 1.02 eV 직접천이형 bandgap을 가지고 있으며 높은 광흡수 계수($1{\times}10^5\;cm^{-1}$)를 가지고 있어 박막형태양전지의 광흡수층으로 많이 사용되고 있다. 특히 저비용, 대면적화, 고효율의 태양전지 구현을 위해 CIS 나노입자를 합성하고 용매에 분산시켜 Ink화하는 연구가 진행되고 있다. 하지만 기존의 CIS 나노입자합성에 사용되는 수열합성법은 독성이 강하고 고비용의 용매를 사용하는 단점을 갖고 있다. 따라서 본 연구에서는 이러한 문제를 해결하고자 수용액기반의 수열합성법과 열처리과정을 통하여 CIS 나노입자를 합성하였다. 합성된 나노입자를 XRD, EDAX, SEM, TEM 분석을 통하여 CIS가 합성된 것을 확인하였다.

  • PDF

Preparation and Characterization of Hybrid Membrane for Block Copolymer Containing Diphenyl Unit Increasing Cationic Conductivity for Fuel Cells (연료전지용 양이온 전도성이 증가된 디페닐 단위를 갖는 블록공중합체 혼성막 제조 및 특성)

  • KIM, AE RHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.465-470
    • /
    • 2017
  • Sulfonated fluorinated block copolymers having diphenyl units were mixed with the sulfonated cationic conductive polymers at an optimum mixing ratio to form hybrid membranes for fuel cells and their characteristics were studied. 2D and 3D AFM topology analysis confirmed that the number of hydrophilic units in the hybrid membrane was improved. Through the FE-SEM, the microstructure of the hybrid membrane implied hydrogen bonding and pi-pi interactions, and EDAX confirmed carbon, oxygen, sulfur, and fluorine. The thermogravimetric analysis showed that the hybrid membrane was thermally stable and the hydrophilicity of the hybrid membrane was increased by the contact angle of water droplets. As a result, it was confirmed that the cation conductivity increased by a factor of 1.8 times as the number of acidic domains in the hybrid film increased.

A Study on the Cracking Behavior in the Welds of Ni-Cr-Fe and Ni-Fe-Cr-Mo Alloys (Ni-Cr-Fe 및 Ni-Fe-Cr-Mo계 합금의 용접부 균열특성에 관한 연구 Part II : 열영향부의 액화균열)

  • 김희봉;이창희
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.46-55
    • /
    • 1997
  • This study has evaluated the liquation cracking behavior in the heat affected zone of several Ni base superalloys (Incoloy 825, Inconel 718 and Inconel 600). 304 and 310S austenitic stainless steels were also included for comparison. In addition, the mechanism of liquation cracking in the HAZ was postulated based on the extensive microstructural examinations with SEM, EDAX and TEM. The liquation cracking resistance of Ni base alloys was found to be far inferior to that of austenitic stainless steels. The liquation cracking of Incoloy 825 and Inconel 718 was believed to be closely related with the Laves-austenite(Ti rich in 825 and Nb rich in 718) and MC-austenitic eutectic phases formed along the grain boundaries by constitutional liquation and incipient melting under rapid welding thermal contraction. Further, liquation cracking resistance of the HAZ was dependent not only upon the type and amount of low melting phases but also on the grain size.

  • PDF

The effect of$ MnO_2$on the electrical properties in Pb(Zr, Ti)$O_3$/-Pb(Mg, Nb)$O_3$ (Pb(Zr, Ti)$O_3$-Pb(Mg, Nb)$O_3$$MnO_2$첨가가 전기적 성질에 미치는 영향)

  • 김현재;조봉희;정형진;박창엽
    • Electrical & Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.152-161
    • /
    • 1988
  • Pb(Zr, Ti)O$^{3}$-Pb(Mg, Nb)O$^{3}$계에 MnO$_{2}$첨가량을 변화시켜 소결성, 미세구조, 유전상수, 비저항 및 압전특성에 미치는 영향을 XRD, EDAX 및 SEM을 이용하여 미세구조를 관찰하고 실험을 통하여 전기적 성질에 미치는 영향을 밝혔다. 비저항의 변화없이 그레인 성장이 억제되는 $MnO_{2}$의 첨가량은 0.4wt%이었으며 이때 분말의 합성이 촉진되어 소성된 시편의 밀도가 증가하였다. 그러나 고상반응의 범위를 벗어나는 과잉 $MnO_{2}$는 편석이 되어 그레인 경계상에 모임이 확인되었고 또한 기공을 형성하여 밀도를 낮추었다. $Mn^{+4}$$Mg^{+2}$ 와 치환되어 페로브스카이트 구조의 "A" 결핍을 유발하였으며 이것이 비저강을 감소시키는 원인으로 밝혀졌다.감소시키는 원인으로 밝혀졌다.

  • PDF

Secondary Mineral Formation and Expansion Mechanisms Involved in Concrete Pavement Deterioration (콘크리트 포장 도로의 성능저하에 관련된 이차광물형성과 팽창메카니즘)

  • ;Rober D. Cody
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.95-109
    • /
    • 2002
  • A significant question is what role does newly-formed expansive mineral growth play in the premature deterioration of concrete. These minerals formed in cement paste as a result of chemical reactions involving cement paste and coarse/fine aggregate. Petrographic observations and SEM/EDAX analysis were conducted in order to determine chemical and mineralogical changes in the aggregate and cement paste of samples taken from lowa concrete highways that showed premature deterioration. Formation and expansive mechanisms involved in deterioration were Investigated. Brucite, Mg(OH)$_2$, is potentially expansive mineral that farms in cement paste of concretes containing reactive dolomite aggregate as a result of partial dedolomitization of the aggregate. No cracking was observed to be spatially associated with brucite, but most brucite was microscopic in size and widely disseminated in the cement paste of less durable concretes. Expansion stresses associated with its growth at innumerable microlocations may be retrieved by cracking at weaker locations in the concrete. Ettringite, 3CaO.Al$_2$O$_3$.3CaSO$_4$.32$H_2O$, completely fills many small voids and occurs as rims lining the margin of larger voids. Microscopic ettringite is common disseminated throughout the paste in many samples. Severe cracking of cement paste causing premature deterioration is often closely associated with ettringite locations, and strongly suggests that ettringite contributed to deterioration. Pyrite, FeS2, is commonly present in coarse/fine aggregates, and its oxidation products is observed in many concrete samples. Pyrite oxidation provides sulfate ions for ettringite formation.

Ettringite/Thaumasite Formation, Stability and Their Effect on Deterioration of Concrete (에트린자이트/사우마사이트의 형성 및 안정도와 콘크리트 성능저하에 미치는 영향)

  • 이효민;황진연
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.75-90
    • /
    • 2003
  • Ettringite and thaumasite were observed in some concrete. The morphology and occurrence of these minerals were closely examined by performing SEM/EDAX analyses. We also experimentally induced the concrete deterioration using $Na_2SO_4$ solution with application of various environmental conditions. The stability of these minerals and deterioration characteristics under applied experimental conditions were determined. Abundant ettringite formed by“through solution reaction”occurred in many open spaces, and some microscopic ettringite formed by "tophochemical replacement" of calcium aluminate also occurred in cement paste. Severe cracking of cement paste causing premature deterioration was often associated with ettringite location. Under specific condition, ettringite was transformed to thaumasite, tricthloroaluminate, or decomposed. Thaumasite occurred with association of ettrinsite in concrete containing carbonate aggregate being subject to dedolomitization or in some concrete being subject to carbonation. Thaumasite appears to be formed under the similar condition to the general ettringite forming condition, but it formed solid solution with ettringite by substituting pre-existing ettringite. Ettringite can also be transformed to trichloroaluminate in the presence of abundant chlorides, but trichloroaluminate changed back to ettringite in late sulfate attack. It is considered that the substitution reaction direction solely depend on the concentration of chloride and sulfate ion.

Characteristics of Silver Ion-Exchange and Methyl Iodide Adsorption at High Temperature Condition by Surface-Modified Natural Zeolite (표면개질 천연제올라이트를 이용한 은이온 교환 및 고온공정에서 메틸요오드 흡착특성)

  • Park, Geun Il;Cho, Il-Hoon;Kim, Kae-Nam;Lee, Min Ok;Yu, Jae-Hyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1765-1775
    • /
    • 2000
  • The removal of radioactive organic iodide generated from high temperature process in nuclear facility was generally performed by silver ion-exchanged synthetic zeolite (AgX). The purpose of this study is to obtain fundamental data for the substitution of natural zeolite(NZ) in stead of synthetic zeolite as supporter for the removal of methyl iodide in high temperature conditions. Therefore, NZ was modified with NaCl, $NaNO_3$ solution, and the analysis of the physical or surface characteristics through XRD, SEM-EDAX, and BET analysis was performed. In order to obtain the optimal surface-modification condition of NZ, adsorption capacities at $150^{\circ}C$ on surface-modified silver ion-exchanged NZ prepared with the variation of solution concentration were evaluated. The optimal condition of surface modification is that concentration of $NaNO_3$ and $AgNO_3$ are 1N and 1.2N, respectively(namely Ag-SMNZ). The adsorption isotherm of methyl iodide on Ag-SMNZ in a range of $100^{\circ}C$ to $300^{\circ}C$ was obtained, which is similar to that of 13X, and the maximum adsorption amount of Ag-SMNZ reached approximately 50% that of AgX. It would be evaluated that the adsorption capacity at $150{\sim}200^{\circ}C$ is relatively higher than other temperature, and the chemisorption between silver and iodide is attributed to a strong binding even after desorption test.

  • PDF

Concrete Deterioration Near Coastal Area and Characteristics of Associated Secondary Mineral Formation (해안지역 콘크리트의 성능저하 현상과 이에 수반되는 이차광물의 형성 특징)

  • 이효민;황진연;진치섭
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.365-374
    • /
    • 2003
  • Various deleterious chemicals can be introduced to existing concrete structures from various external sources. The deterioration of concrete by seawater attack is involved in complex processes due to various elements contained in seawater. In the present study, attention was paid to the formation of secondary minerals and characteristics of mineralogical and micro-structural changes involved in concrete deterioration caused by the influence of major seawater composition. The characteristics of deterioration occurred in existing concrete structures was carefully observed and samples were collected at many locations of coastal areas in Busan-Kyungnam. The petrographic, XRD, SEM/EDAX analyses were conducted to determine chemical, mineralogical and micro-structural changes in the aggregate and cement paste of samples. The experimental concrete deteriorations were performed using various chloride solutions (NaCl, CaCl, $MgCl_2$ and $Na_2SO_4$ solution. The experimental results were compared with the observation results in order to determine the effect of major elements in seawater on the deterioration. The alkalies in seawater appear to accelerate alkali-silica reaction (ASR). The gel formed by ASR is alkali-calcium-silica gel which known to cause severe expansion and cracking in concrete. Carbonation causes the formation of abundant less-cementitious calcite and weaken the cement paste. Progressive carbonation significantly affects on the composition and stability of some secondary minerals. Abundant gypsum generally occurs in concretes subjected to significant carbonation, but thaumasite ({$Ca_6/[Si(OH)_6]_2{\cdot}24H_2O$}${\cdot}[(SO_4)_2]{\cdot}[(CO_3))2]$) occurs as ettringite-thaumasite solid solution in concretes subjected to less significant carbonation. Experimentally, ettringite can be transformed to trichloroaluminate or decomposed by chloride ingress under controlled pH conditions. Mg ions in seawater cause cement paste deterioration by forming non-cementitious brucite and magnesium silicate hydrate (MSH).

Study on Physical and Chemical Properties of CaO-Al2O3 System Melting Compound (CaO-Al2O3계 용융화합물의 물리·화학적 특성에 관한 연구)

  • Lee, Keun-Jae;Koo, Ja-Sul;Kim, Jin-Man;Oh, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.209-215
    • /
    • 2013
  • This study is aimed to identify the method to use the CaO-$Al_2O_3$ system of rapidly cooled steel making slag (RCSS) as the environment-friendly inorganic accelerating agent by analyzing its physical and chemical properties. The fraction of rapidly cooled steel making slag is distinguished from its fibrous, and the contents of CaO and $Fe_2O_3$ are inversely proportional across different fractions. In addition, as the content of CaO decreased and the content of $Fe_2O_3$ increased, the loss ignition tended to become negative (-) and the density increased. The pore distribution by mercury intrusion porosimetry is very low as compared to the slowly cooled steel-making slag, which indicates that the internal defect and the microspore rate are remarkably lowered by the rapid cooling. To analyze the major minerals the rapidly cooled steel-making slag, XRD, f-CaO quantification and SEM-EDAX analysis have been performed. The results shows that f-CaO does not exist, and the components are mainly consisted of $C_{12}A_7$ and reactive ${\beta}-C_2S$.