• Title/Summary/Keyword: SEM/EDX

Search Result 682, Processing Time 0.027 seconds

Characteristics of Surface Modified Activated Carbons Prepared by Potassium Salt Sequentially After Hydrochloric Acid Treatment

  • Oh, Won-Chun;Park, Chong-Sung;Bae, Jang-Soon;Ko, Young-Shin
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2006
  • The objective of this paper is to compare the variation of surface properties by hydrochloric acid pre-treatment and of metallic potassium and their salts loading effect for activated carbon after surfaces transformation by acid. From the results of nitrogen adsorption, each isotherm shows a distinct knee band, which is closely related to the characteristic of microporous carbons with capillary condensation in micropores. In order to present the causes of the differences in surface properties and $S_{BET}$ after the samples were treated with hydrochloric acid, pore structure and surface morphology are investigated by adsorption analysis. X-ray diffraction (XRD) patterns indicate that activated carbons show better performance for metallic potassium and potassium salts by pre-treatment with hydrochloric acid. Scanning electron microscopy (SEM) pictures of potassium/activated carbon particles provide information about the homogeneous distribution of metal or metal complex on the surface. For the chemical composition microanalysis for potassium treatment of the activated carbon pre-treated with hydrochloric acid, samples were analyzed by energy disperse X-ray (EDX). Finally, the type and quality of oxygen groups are determined from the method proposed by Boehm. A positive influence of the acidic groups on the carbon surface by acid treatment is also demonstrated by an increase in the contents of potassium salts with increasing of acidic groups calculated from Boehm titration.

  • PDF

Photocatalytic Effect for TiO2/ACF Composite Electrochemically Prepared with TNB Electrolyte

  • Chen, Ming-Liang;Lim, Chang-Sung;Oh, Won-Chun
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.177-183
    • /
    • 2007
  • [ $TiO_2$ ]ACF composites were prepared by the electrochemical method with Titanium (IV) n-butoxide (TNB) electrolyte under different electrochemical operation time. The BET surface area for $TiO_2$/ACF composites decrease with the increase of electrochemical operation time. There is a single crystal structure which is anatase in all of the samples from the data of XRD. The SEM micrphotographs of $TiO_2$/ACF composites show that the $TiO_2$ particles were well mixed with the ACF. There are O and P with strong C and Ti peaks in all samples from EDX results, and it also shows that a decrease of the C content with a increasing of Ti content with increasing of the electrochemical operation time in the over all composites. DSC cures show that the exothermic peak of all composites at $560^{\circ}C$ represents the transformation heat of amorphous parts to anatase phase and the discontinuous grain growth of the transformed anatase particles. Finally, the excellent photoactivity of $TiO_2$/ACF composites (especially, ACFT10) could be attributed that the decrease of concentration of MB can be concluded to be much faster for the adsorption by ACF than for photocatalytic decomposition by $TiO_2$.

Electrorefining of CuZr Alloy Using Ba2ZrF8-LiF Electrolyte

  • Lee, Seong Hun;Choi, Jeong Hun;Yoo, Bung Uk;Lee, Jong Hyeon
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.672-678
    • /
    • 2017
  • In the production of zirconium cladding tube, a pickling acid solution is used to remove surface contaminants, which generates tons of pickling acid waste. The waste pickling solution is a valuable resource of Hf-free Zr. Many studies have investigated separating the Hf-free Zr source from the waste pickling acid. The results showed that $Ba_2ZrF_8$ precipitates prepared from the waste pickling acid were useful as an electrolyte for the electrorefining of Zr in molten salt. In the present work, electrorefining was performed in a $Ba_2ZrF_8-LiF$ binary electrolyte to recover Zr from a Hf-free CuZr ingot anode prepared by electroreduction. Before electrorefining, two pretreatments are performed. First, electrolyte melting was carried out to determine the eutectic temperature, and second, the electrolyte was treated to eliminate impurities, mainly hydride. After electrorefining, the cathode deposits were analyzed by $O_2$ gas analyzer and SEM-EDX to explore the possibility of recovering nuclear-grade Zr metal. Moreover, the anode was analyzed by SEM-EDX to determine the Zr dissolution depth.

Characteristics for removal of As(V) using Phosphorylated Pine needles (인산화 솔잎을 이용한 비소(As)제거 특성)

  • Kwon, Taik Nam;Kim, Hyun Ah;An, Seon Jin;Lee, Chang Hee;Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.79-85
    • /
    • 2011
  • A study on characteristics for removal of arsenic ion using phosphorylated pine needles was performed. The surface condition of phosphorylated pine needles was confirmed by FT-IR, SEM(Scanning Electron Microscopy) and EDX(Energy Dispersive X-ray). The removal rate of arsenic ion was the highest as about 98% at pH 7. Most absorption for arsenic ion was also completed within 30min and decreased with time and pH of arsenic solution from 6.5 to 2.4.

A Study on the Coating Method of Platinum based Catalyst for Odor Gas and VOCs Oxidation (악취가스 및 휘발성 유기 화합물 산화를 위한 백금계 촉매의 코팅 방법에 관한 연구)

  • Shin, Jung Hun;Jung, Min Gie;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.497-503
    • /
    • 2021
  • In this study, different methods to coat honeycomb and metal foam substrate with platinum/titania for removing odor gases and volatile organic compounds were investigated. Among them, the powder coating and the nano coating were compared. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) analysis was used to investigate the surface conditions and exposed platinum composition ratios on honeycomb and metal foam. Also, the catalytic oxidation performance of toluene, trimethylamine and isopropyl alcohol was compared according to the coating method.

The effect of high-temperature on foamed concrete

  • Canbaz, Mehmet;Dakman, Hafid;Arslan, Baris;Buyuksungur, Arda
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Within the scope of this study, the foam solution was prepared by properly mixing sulfonate based foam agent with water. Furthermore, this solution was mixed with the mixture of fine sand, cement, and water to produce foamed concrete. The mixture ratios which are the percentage of foam solution used in foam concrete were chosen as 0, 20, 40 and 60% by vol. After these groups reached 28 days of strength, they were heated to 20, 100, 400 and $700^{\circ}C$ respectively. Afterward, high-temperature effects on the foamed concrete were obtained by employing physical and mechanical properties tests. Additionally, SEM (scanning electron microscope) and EDX (energy-dispersive X-ray spectroscopy) tests were employed to analyze the microstructure, and ${\mu}-CT$ (micro computed tomography) images were used to reconstruct 3-D models of the heat-treated specimens. Then, these models are analyzed to examine the void structures and the changes in these structures due to the high temperatures. The study has shown that the void structures reduce the high-temperature effects and the foam solution could be mixed with concrete up to 40 % by vol. where the high strength of foamed concrete is non-mandatory.

A Study on Dielectric Properties of Flame-Retardant Silicone Rubber Due to Silica Amount Change (실리카 양 변화에 의한 난연성 실리콘 고무의 유전특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.364-370
    • /
    • 2021
  • In this study, the dielectric properties of flame retardant silicone rubber mixed with the amount of silica 50~65 phr were measured at frequencies ranging from 1 to 2.7 MHz and temperature ranges from 30℃ to 160℃. The permittivity decreased with higher frequencies and higher temperatures, and tanδ are thought to have decreased due to the increased heat oxidation of the methyl group bound to Si, which increased the hardness of silicone rubber. FT-IR analysis of specimen mixed with SiO2 of 50~65 phr showed oscillations of OH groups bound to SiO2 between wavenumber 3,600 and 3,300. As a result of analyzing surface components by Energy Dispersive X-ray (EDX) on all specimens mixed with SiO2 of 50 to 65 phr, all specimens contained Si, and the analysis by field emission scanning electron (FE-SEM) confirmed that about 1~5 ㎛ particles were distributed regularly on the surface of the specimens.

Analysis of microstructural characteristics and components of red and yellow ink pigments used in permanent makeup

  • Hyun Sook Jin;Byung Soo Chang
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.3.1-3.8
    • /
    • 2022
  • Our purpose in this study is to analyze the microstructural characteristics and constituent elements of inorganic substances added to the yellow ink and red ink pigments used in permanent makeup. We observed the microstructural properties of inorganic pigments added to the ink using a scanning electron microscopy (SEM) and analyzed the constituent elements of the inorganic pigment particles using an energy dispersive X-ray spectroscopy (EDX). In red wine-colored ink, cubic titanium dioxide with a diameter of 110 to 200 nm was the major component, and rod-shaped iron oxide was rarely observed. Most of the ingredients of taupe yellow ink were rod-shaped yellow iron oxide, and a small amount of cubic titanium dioxide was observed. Red wine-colored ink and taupe yellow ink contained lumps composed of titanium dioxide particles. In red wine-colored ink, lumps were formed by agglomeration. However, we observed that the surface of the lump composed of titanium dioxide in the taupe yellow ink had a smooth surface caused by external physical compression. The titanium dioxide particle mass which found in taupe yellow ink in this study is an artificial product. When this mass accumulates in the dermis, it may cause a color mismatch. Therefore, permanent makeup using fine pigments should be free of foreign substances that may cause trouble in the skin. In addition, there is a need to improve the quality of the ink so that the required color can be safe and long lasting in the dermis.

A Case Study for Deterioration due to Alkali-Silica Reaction in the Cement Concrete Pavement (알칼리-실리카 반응에 의한 시멘트 콘크리트 포장 파손 사례)

  • Hong, Seung-Ho;Han, Seung-Hwan;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.355-360
    • /
    • 2006
  • The Alkali-Silica Reaction(ASR) may cause a serious failure in the concrete pavements and structures. Several researches in some nations have conducted the continuous studies to prevent failure of the concrete structures by the ASR distress as well as the studies to manifest the mechanism. The researches on the ASR have not been performed affluently in Korea because the distress due to ASR has seldom been reported literarily. In this study, we tried to set up the systematic scheme practically for verifying the cause of distress due to ASR by using the visual inspections in field, the chemical method, petrographic analysis, and Electron Dispersive X-ray Spectrometer(EDX) method of Scanning Electron Microscopy(SEM) in laboratory. The chemical method, petrographic method using SEM, and X-ray method were used to verify the cause of pattern crack on the surface and internal crack in the plain concrete pavement. It can be concluded that the distress of a specific site in plain concrete pavement was mainly due to ASR. The chemical method, the petrographic method and EDX method using SEM may be the effective tools for verifying the cause of AAR distresses.

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.