• 제목/요약/키워드: SEM(Scanning Electron Microscope)

검색결과 1,875건 처리시간 0.033초

전자빔 가공기의 지능형 원격 빔 조절 기능의 개발 (Development of Intelligent Remote Beam Control Function in E-Beam Manufacturing System)

  • 임선종;유준
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.24-29
    • /
    • 2006
  • The use electron-beam(E-beam) manufacturing system provides a means to alleviate optic exposure equipment's problems. We are developing an E-beam manufacturing system with scanning electron microscope(SEM) function. The E-beam manufacturing system consist of high voltage generator, beam blanker, condenser lenses, object lenses, stigmator and stage. The development of E-beam manufacturing system is used on the method of remaking SEM's structure. The functions of SEM are developed. It is important for the test of E-beam performance. In E-beam manufacturing system and SEM, beam focus is important function. In this paper, we propose intelligent remote control function for beam focus in E-beam manufacturing system. The function extends the user's function and gives convenience.

유한요소법을 사용한 주사전자 현미경의 전자렌즈 설계 및 해석에 관한 연구 (A Study on Design and Analysis for Magnetic Lenses of a Scanning Electron Microscope using Finite Element Method)

  • 박근;정현우;박만진;김동환;장동영
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.95-102
    • /
    • 2007
  • The scanning electron microscope (SEM) is one of the most popular instruments available for the measurement and analysis of the micro/nano structures. It is equipped with an electron optical system that consists of an electron beam source, magnetic lenses, apertures, deflection coils, and a detector. The magnetic lenses playa role in refracting electron beams to obtain a focused spot using the magnetic field driven by an electric current from a coil. A SEM column usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present work concerns finite element analysis for the electron magnetic lenses so as to analyze their magnetic characteristics. To improve the performance of the magnetic lenses, the effect of the excitation current and pole-piece design on the amount of resulting magnetic fields and their peak locations are analyzed through the finite element analysis.

Specimen Preparation for Scanning Electron Microscope Using a Converted Sample Stage

  • Kim, Hyelan;Kim, Hyo-Sik;Yu, Seungmin;Bae, Tae-Sung
    • Applied Microscopy
    • /
    • 제45권4호
    • /
    • pp.214-217
    • /
    • 2015
  • This study introduces metal coating as an effective sample preparation method to remove charge-up caused by the shadow effect during field emission scanning electron microscope (FE-SEM) analysis of dynamic structured samples. During a FE-SEM analysis, charge-up occurs when the primary electrons (input electrons) that scan the specimens are not equal to the output electrons (secondary electrons, backscattered electrons, auger electrons, etc.) generated from the specimens. To remove charge-up, a metal layer of Pt, Au or Pd is applied on the surface of the sample. However, in some cases, charge-up still occurs due to the shadow effect. This study developed a coating method that effectively removes charge-up. By creating a converted sample stage capable of simultaneous tilt and rotation, the shadow effect was successfully removed, and image data without charge-up were obtained.

Stem cell behaviors on periodic arrays of nanopillars analyzed by high-resolution scanning electron microscope images

  • Jihun Kang;Eun-Hye Kang;Young-Shik Yun;Seungmuk Ji;In-Sik Yun;Jong-Souk Yeo
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.26.1-26.3
    • /
    • 2020
  • The biocompatible polyurethane acrylate (PUA) nanopillars were fabricated by soft lithography using three different sizes of nanobeads (350, 500, and 1000 nm), and the human adipose-derived stem cells (hASCs) were cultured on the nanopillars. The hASCs and their various behaviors, such as cytoplasmic projections, migration, and morphology, were observed by high resolution images using a scanning electron microscope (SEM). With the accurate analysis by SEM for the controlled sizes of nanopillars, the deflections are observed at pillars fabricated with 350- and 500- nm nanobeads. These high-resolution images could offer crucial information to elucidate the complicated correlations between nanopillars and the cells, such as morphology and cytoplasmic projections.

유한요소해석과 광선추적을 연계한 주사전자 현미경 대물렌즈의 설계 및 해석 (Design and Analysis of an Objective Lens for a Scanning Electron Microscope by Coupling FE Analysis and Ray Tracing)

  • 박근;이재진;박만진;김동환;장동영
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.92-98
    • /
    • 2009
  • The scanning electron microscope (SEM) contains an electron optical system in which electrons are emitted and moved to form a focused beam, and generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present study covers the design and analysis of an objective lens for a thermionic SEM. A finite element (FE) analysis for the objective lens is performed to analyze its magnetic characteristics for various lens designs. Relevant beam trajectories are also investigated by tracing the ray path of the electron beams under the magnetic fields inside the objective lens.

전자빔 가공시스템용 경통의 구축 (Establishment of Column Unit for Electron Beam Machining System)

  • 강재훈;이찬홍;최종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1017-1020
    • /
    • 2004
  • It is not efficient and scarcely out of the question to use commercial expensive electron beam lithography system widely used for semiconductor fabrication process for the manufacturing application field of various devices in the small business scope. Then scanning electron microscope based electron beam machining system is maybe regarded as a powerful model can be used for it simply. To get a complete suite of thus proper system, column unit build up with several electo-magnetic lens is necessarily required more than anything else to modify scanning electron microscope. In this study, various components included several electro-magnetic lens and main body which are essentially constructed for column unit are designed and manufactured. And this established column unit will be used for next connected study in the development step of scanning electron microscope based electron beam machining system.

  • PDF

수치해석을 통한 SEM 챔버내의 이차전자 거동해석 및 이차전자 검출기의 최적 장착 위치 선정 (The Behavior of Secondary Electrons and Optimal Mounting Position of a Secondary Electron Detector in SEM with a Numerical Analysis)

  • 부경석;전종업
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.15-21
    • /
    • 2008
  • Secondary electron detectors used in scanning electron microscope accept secondary electrons emitted from the specimen and convert them to an electrical signal that, after amplification, is used to modulate the gray-level intensities on a cathode ray tube, producing an image of the specimen. In order to acquire images with good qualities, as many secondary electrons as possible should be reached to the detector. To realize this it is very important to select an appropriate mounting position and angle of the detector inside the chamber of scanning electron microscope. In this paper, a number of numerical simulations are performed to explore the relationships between detection rates of secondary electrons and the values of some parameters, such as distances between the detector and sample, relative mounting positions of scintillator positioned inside the detector with respect to detector cover, two types of mounting angles of the detector. The relationships between detection rates and applied voltages to corona ring and faraday cage, and energies of secondary electrons are investigated as well.

열전자방사형 주사전자 현미경 전자광학계의 유한요소해석 (Finite Element Analysis for Electron Optical System of a Thermionic SEM)

  • 박근;정현우;김동환;장동영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1288-1293
    • /
    • 2007
  • The present study covers the design and analysis of a thermionic scanning electron microscope (SEM) column. The SEM column contains an electron optical system in which electrons are emitted and moved to form a focused beam, and this generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system mainly consists of a thermionic electron gun as the beam source, the lens system, the electron control unit, and the vacuum unit. In the design process, the dimension and capacity of the SEM components need to be optimally determined with the aid of finite element analyses. Considering the geometry of the filament, a three-dimensional (3D) finite element analysis is utilized. Through the analysis, the beam emission characteristics and relevant trajectories are predicted from which a systematic design of the electron optical system is enabled. The validity of the proposed 3D analysis is also discussed by comparing the directional beam spot radius. As a result, a prototype of a thermionic SEM is successfully developed with a relatively short time and low investment costs, which proves the adoptability of the proposed 3D analysis.

  • PDF

주사형(走査型) 전자현미경(電子顯微鏡)의 응용분야(應用分野) (Applications of the Scanning Electron Microscope)

  • 김용락
    • Applied Microscopy
    • /
    • 제2권1호
    • /
    • pp.39-46
    • /
    • 1972
  • There are many kinds of microscopes suitable for general studies; optical microscopes(OM), conventional transmission electron microscopes (TEM), and scanning electron microscopes(SEM). The optical microscopes and the conventional transmission electron microscopes are very familiar. The images of these microscopes are directly formed on an image plane with one or more image forming lenses. On the other hand, the image of the scanning electron microscope is formed on a fluorescent screen of a cathode ray tube using a scanning system similar to television technique. In this paper, the features and some applications of the scanning electron microscope will be discussed briefly. The recently available scanning electron microscope, combining a resolution of about $200{\AA}$ with great depth of field, is favorable when compared to the replica technique. It avoids the problem of specimen damage and the introduction of artifacts. In addition, it permits the examination of many samples that can not be replicated, and provides a broader range of information. The scanning electron microscope has found application in diverse fields of study including biology, chemistry, materials science, semiconductor technology, and many others. In scanning electron microscopy, the secondary electron method. the backscattererd electron method, and the electromotive force method are most widely used, and the transmitted electron method will become more useful. Change-over of magnification can be easily done by controlling the scanning width of the electron probe. It is possible. to continuously vary the magnification over the range from 100 times to 1.00,000 times without readjustment of focusing. Conclusion: With the development of a scanning. electron microscope, it is now possible to observe almost all-information produced through interactions between substances and electrons in the form of image. When the probe is properly focused on the specimen, changing magnification of specimen orientation does not require any change in focus. This is quite different from the conventional transmission electron microscope. It is worthwhile to note that the typical probe currents of $10^{-10}$ to $10^{-12}\;{\AA}$ are for below the $10^{-5}$ to $10^{-7}\;{\AA}$ of a conventional. transmission microscope. This reduces specimen contamination and specimen damage due to heatings. Outstanding features of the scanning electron microscope include the 'stereoscopic observation of a bulky or fiber specimen in high resolution' and 'observation of potential distribution and electromotive force in semiconductor devices'.

  • PDF

전계방출 주사전자 현미경의 전자광학계 유한요소해석 (Finite Element Analysis for Electron Optical System of a Field Emission SEM)

  • 박근;박만진;김동환;장동영
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1557-1563
    • /
    • 2006
  • A scanning electron microscope (SEM) is well known as a measurement and analysis equipment in nano technology, being widely used as a crucial one in measuring objects or analyzing chemical components. It is equipped with an electron optical system that consists of an electron beam source, electromagnetic lenses, and a detector. The present work concerns numerical analysis for the electron optical system so as to facilitate design of each component. Through the numerical analysis, we investigate trajectories of electron beams emitted from a nano-scale field emission tip, and compare the result with that of experimental observations. Effects of various components such as electromagnetic lenses and an aperture are also discussed.