• 제목/요약/키워드: SELF-ORGANIZING MAP

검색결과 425건 처리시간 0.025초

Bhattacharyya 커널을 적용한 Centroid Neural Network (Centroid Neural Network with Bhattacharyya Kernel)

  • 이송재;박동철
    • 한국통신학회논문지
    • /
    • 제32권9C호
    • /
    • pp.861-866
    • /
    • 2007
  • 본 논문은 가우시안 확률분포함수 (Gaussian Probability Distribution Function) 데이터 군집화를 위해 중심신경망 (Centroid Neural Network, CNN)에 Bhattacharyya 커널을 적용한 군집화 알고리즘 (Bhattacharyya Kernel based CNN, BK-CNN)을 제안한다. 제안된 BK-CNN은 무감독 알고리즘인 중심신경망을 기반으로 하고 있으며, 커널 방법을 이용하여 데이터를 특징공간에서 투영한다. 입력공간의 비선형 문제를 선형적으로 해결하기 위해 제안한 커널 방법인데, 확률분포 사이의 거리측정을 위해 Bhattacharyya 거리를 이용한 커널방법을 사용하였다. 제안된 BK-CNN을 영상데이터 분류의 문제에 적용했을 때, 제안된 BK-CNN 알고리즘이 Bhattacharyya 커널을 적용한 k-means, 자기조직지도(Self-Organizing Map)와 중심 신경망등의 기존 알고리즘보다 1.7% - 4.3%의 평균 분류정확도 향상을 가져옴을 확인할 수 있었다.

A New Approach to Solve the TSP using an Improved Genetic Algorithm

  • Gao, Qian;Cho, Young-Im;Xi, Su Mei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권4호
    • /
    • pp.217-222
    • /
    • 2011
  • Genetic algorithms are one of the most important methods used to solve the Traveling Salesman Problem. Therefore, many researchers have tried to improve the Genetic Algorithm by using different methods and operations in order to find the optimal solution within reasonable time. This paper intends to find a new approach that adopts an improved genetic algorithm to solve the Traveling Salesman Problem, and compare with the well known heuristic method, namely, Kohonen Self-Organizing Map by using different data sets of symmetric TSP from TSPLIB. In order to improve the search process for the optimal solution, the proposed approach consists of three strategies: two separate tour segments sets, the improved crossover operator, and the improved mutation operator. The two separate tour segments sets are construction heuristic which produces tour of the first generation with low cost. The improved crossover operator finds the candidate fine tour segments in parents and preserves them for descendants. The mutation operator is an operator which can optimize a chromosome with mutation successfully by altering the mutation probability dynamically. The two improved operators can be used to avoid the premature convergence. Simulation experiments are executed to investigate the quality of the solution and convergence speed by using a representative set of test problems taken from TSPLIB. The results of a comparison between the new approach using the improved genetic algorithm and the Kohonen Self-Organizing Map show that the new approach yields better results for problems up to 200 cities.

고객의 동적 선호 탐색을 위한 순차패턴 분석: (주)더페이스샵 사례 (A Sequential Pattern Analysis for Dynamic Discovery of Customers' Preference)

  • 송기룡;노성호;이재광;최일영;김재경
    • 경영정보학연구
    • /
    • 제10권2호
    • /
    • pp.195-209
    • /
    • 2008
  • 고객의 니즈가 시시각각 변화하는 경영환경에서 획일화된 매장관리 방법으로 매장의 수익성을 증대시키기에는 한계가 있다. 따라서 고객의 선호 변화를 예측하여 각 매장에 적절한 상품을 추천할 필요가 있다. 본 연구에서는 판매 데이터 분석을 통해 시간 순서를 고려한 상품 추천 및 매장관리 방법을 제안한다. 즉 자기조직화지도(Self Organizing Map) 알고리즘을 이용하여 매장의 판매 프로파일을 군집화하고, 매장 궤적의 예측을 통해 목표 매장을 관리하는 방법을 제시한다. 본 연구의 방법론을 검증하기 위해 (주)더페이스샵 판매데이터를 적용하여 평가하였으며, 평가결과 제시한 방법론은 화장품처럼 유행에 민감하고 라이프사이클이 짧은 특징을 지닌 상품을 판매하는 매장의 수익성 증대에 기여할 수 있을 것으로 기대된다.

하이브리드 클라우드 환경에서의 응용 특성 가중치를 고려한 자원 군집화 기법 (A Resource Clustering Method Considering Weight of Application Characteristic in Hybrid Cloud Environment)

  • 오유리;김윤희
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권8호
    • /
    • pp.481-486
    • /
    • 2017
  • 클라우드의 원하는 자원을 필요한 만큼만 사용하고 지불하는(Pay-per-use) 방식을 이용하여 과학 응용을 수행하고자 하는 과학자들이 늘어나는 추세이다. 그러나 다양한 특성으로 구성된 클라우드 자원으로 과학자들은 적절한 자원을 선택하는데 어려움을 겪는다. 이에 따라 자원의 효율적인 활용을 위하여 과학자가 실험하고자하는 응용의 특성에 따라 동적으로 자원을 분류하는 것이 필요하다. 본 연구에서는 하이브리드 클라우드 환경에서 응용의 특성을 반영한 자원 군집 분석 기법을 제안한다. 자원 군집 분석은 자기조직화지도 및 K-평균 알고리즘을 적용하여 유사한 자원을 군집화한다. 제안한 알고리즘을 통해 과학응용의 특성을 반영한 유사 자원 군집을 형성하였음을 증명한다.

데이터 융합을 이용한 내용기반 이미지 검색에 관한 연구 (Content-based Image Retrieval Using Data Fusion Strategy)

  • 백우진;정선은;김기영;안의근;신문선
    • 정보관리학회지
    • /
    • 제25권2호
    • /
    • pp.49-68
    • /
    • 2008
  • 지금까지의 정보검색 연구에서 데이터 융합 기법을 이용한 문서 검색은 하나의 알고리즘에 의한 검색에 비하여 많은 경우에 효율성이 높은 결과를 얻을 수 있었다. 하지만 이미지 검색에서 상이한 알고리즘을 이용한 다수의 검색 결과를 합쳐 하나의 검색결과를 얻는 데이터 융합 기법의 사용은 많지 않았다. 이 연구에서는 소벨 연산자를 이용한 윤곽선 검출과 자기조직화 지도 알고리즘에 의한 두 검색 결과를 융합하여 각각의 알고리즘에 의한 검색결과 보다 높은 효율성을 보여주는 방법을 제시하였다. 이 연구에서는 상용 클립아트 이미지를 이용하여 사람의 주관적인 적합성 판단을 배제한 검색 실험 데이터를 만들어 사용하였다.

수질 및 유량자료의 기초통계량 분석에 따른 공간분포 파악을 위한 SOM의 적용 (Application of SOM for the Detection of Spatial Distribution considering the Analysis of Basic Statistics for Water Quality and Runoff Data)

  • 진영훈;김용구;노경범;박성천
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.735-741
    • /
    • 2009
  • In order to support the basic information for planning and performing the environment management such as Total Maximum Daily Loads (TMDLs), it is highly recommended to understand the spatial distribution of water quality and runoff data in the unit watersheds. Therefore, in the present study, we applied Self-Organizing Map (SOM) to detect the characteristics of spatial distribution of Biological Oxygen Demand (BOD) concentration and runoff data which have been measured in the Yeongsan, Seomjin, and Tamjin River basins. For the purpose, the input dataset for SOM was constructed with the mean, standard deviation, skewness, and kurtosis values of the respective data measured from the stations of 22-subbasins in the rivers. The results showed that the $4{\times}4$ array structure of SOM was selected by the trial and error method and the best performance was revealed when it classified the stations into three clusters according to the basic statistics. The cluster-1 and 2 were classified primarily by the skewness and kurtosis of runoff data and the cluster-3 including the basic statistics of YB_B, YB_C, and YB_D stations was clearly decomposed by the mean value of BOD concentration showing the worst condition of water quality among the three clusters. Consequently, the methodology based on the SOM proposed in the present study can be considered that it is highly applicable to detect the spatial distribution of BOD concentration and runoff data and it can be used effectively for the further utilization using different water quality items as a data analysis tool.

SOM과 LVQ에 의한 자음의 분류 (Classification of Consonants by SOM and LVQ)

  • 이채봉;이창영
    • 한국전자통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.34-42
    • /
    • 2011
  • 음성타자기의 구현에 접근하려는 노력의 일환으로서, 우리는 본 논문에서 자음의 분류에 대해 연구한다. 많은 자음들은 시간에 따른 주기적 거동을 보이지 않고 따라서 그들에 대한 푸리에 해석의 타당성에 확신을 갖기 어렵다. 그러므로, 우선 음성 신호로부터 추출되는 MFCC와 LPCC 특징벡터들이 자음에 대해 어느 정도의 의미가 있는지를 파악하기 위하여 LBG 클러스터링을 통한 벡터양자화를 수행한다. VQ의 실험적 결과는 자음에 대한 푸리에 해석의 타당성에 관해 분명한 결론을 내리는 것이 쉽지 않음을 보여주었다. 자음의 분류를 위해 SOM과 LVQ의 두 가지 신경망이 사용되었다. SOM의 결과는 몇 쌍의 자음들이 나뉘어 분류되지 않음을 보여주었다. LVQ에서는 본질적으로 이 문제가 사라지지만 자음의 분류 정확도는 낮은 수준이었다. 이로부터, LVQ에 의한 자음 분류에 있어서는 MFCC 및 다른 특징 벡터들이 함께 사용되어야 함이 사료된다. 하지만 본 연구에서 도입한 MFCC/LVQ의 결합은 기존의 언어모델을 기반으로 하는 음소 분류에 비해 그 결과가 나쁘지 않은 것으로 나타났다. 모든 경우에 LPCC 특징벡터는 MFCC에 비해 그 결과가 좋지 않았다.

멀티미디어 정보검색에 적합한 영상정보의 벡터 양자화 코드북 설계 및 특징추출 (VQ Codebook Design and Feature Extraction of Image Information for Multimedia Information Searching)

  • 서석배;김대진;강대성
    • 전자공학회논문지S
    • /
    • 제36S권8호
    • /
    • pp.101-112
    • /
    • 1999
  • 본 논문에서는 멀티미디어 정보검색을 위하여 영상정보의 특징추출에 적합한 벡터 양자화 코드북 설계 방법을 제안한다. 기존의 벡터 양자화의 경우 영상에 대한 특징을 추출할 경우 보통 영상을 복원한 다음 수행하므로 많은 시간과 메모리가 소요되며, DCT(discrete cosine transform)를 이용한 방법처럼 블록화 현상을 동반한다. 이를 개선하기 위하여 본 논문에서는 웨이브렛 변환과 주성분 해석을 이용한 벡터 양자화 코드북 설계 방법을 제안한다. 웨이브렛 변환은 높은 압축률에서도 블록화 없는 영상을 복원하기 위해서 도입되었으며, 주성분해석은 데이터를 여러 그룹으로 분할하기 위해 도입되었다. 신경회로만인 SOM(self-organizing map)을 이용한 벡터 양자화와 비교실험에서 비슷한 성능을 보이면서도 처리 시간을 대폭 단축시킬 수 있음을 볼 수 있었다.

  • PDF

Subsequent application of self-organizing map and hidden Markov models infer community states of stream benthic macroinvertebrates

  • Kim, Dong-Hwan;Nguyen, Tuyen Van;Heo, Muyoung;Chon, Tae-Soo
    • Journal of Ecology and Environment
    • /
    • 제38권1호
    • /
    • pp.95-107
    • /
    • 2015
  • Because an ecological community consists of diverse species that vary nonlinearly with environmental variability, its dynamics are complex and difficult to analyze. To investigate temporal variations of benthic macroinvertebrate community, we used the community data that were collected at the sampling site in Baenae Stream near Busan, Korea, which is a clean stream with minimum pollution, from July 2006 to July 2013. First, we used a self-organizing map (SOM) to heuristically derive the states that characterizes the biotic condition of the benthic macroinvertebrate communities in forms of time series data. Next, we applied the hidden Markov model (HMM) to fine-tune the states objectively and to obtain the transition probabilities between the states and the emission probabilities that show the connection of the states with observable events such as the number of species, the diversity measured by Shannon entropy, and the biological water quality index (BMWP). While the number of species apparently addressed the state of the community, the diversity reflected the state changes after the HMM training along with seasonal variations in cyclic manners. The BMWP showed clear characterization of events that correspond to the different states based on the emission probabilities. The environmental factors such as temperature and precipitation also indicated the seasonal and cyclic changes according to the HMM. Though the usage of the HMM alone can guarantee the convergence of the training or the precision of the derived states based on field data in this study, the derivation of the states by the SOM that followed the fine-tuning by the HMM well elucidated the states of the community and could serve as an alternative reference system to reveal the ecological structures in stream communities.

Detecting response patterns of zooplankton to environmental parameters in shallow freshwater wetlands: discovery of the role of macrophytes as microhabitat for epiphytic zooplankton

  • Choi, Jong-Yun;Kim, Seong-Ki;Jeng, Kwang-Seuk;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • 제38권2호
    • /
    • pp.133-143
    • /
    • 2015
  • Freshwater macrophytes improve the structural heterogeneity of microhabitats in water, often providing an important habitat for zooplankton. Some studies have focused on the overall influence of macrophytes on zooplankton, but the effects of macrophyte in relation to different habitat characteristics of zooplankton (e.g., epiphytic and pelagic) have not been intensively studied. We hypothesized that different habitat structures (i.e., macrophyte habitat) would strongly affect zooplankton distribution. We investigated zooplankton density and diversity, macrophyte characteristics (dry weight and species number), and environmental parameters in 40 shallow wetlands in South Korea. Patterns in the data were analyzed using a self-organizing map (SOM), which extracts information through competitive and adaptive properties. A total of 20 variables (11 environmental parameters and 9 zooplankton groups) were patterned onto the SOM. Based on a U-matrix, 3 clusters were identified from the model. Zooplankton assemblages were positively related to macrophyte characteristics (i.e., dry weight and species number). In particular, epiphytic species (i.e., epiphytic rotifers and cladocerans) exhibited a clear relationship with macrophyte characteristics, while large biomass and greater numbers of macrophyte species supported high zooplankton assemblages. Consequently, habitat heterogeneity in the macrophyte bed was recognized as an important factor to determine zooplankton distribution, particularly in epiphytic species. The results indicate that macrophytes are critical for heterogeneity in lentic freshwater ecosystems, and the inclusion of diverse plant species in wetland construction or restoration schemes is expected to generate ecologically healthy food webs.