• Title/Summary/Keyword: SDS-stable

Search Result 362, Processing Time 0.026 seconds

Purification and Characterization of A Cell Wall Hydrolyzing Enzyme Produced by An Alkalophilic Bacillus sp. BL-29

  • Hong, Soon-Duck;Kim, Tae-Ho;Hong, Soon-Duck
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.206-212
    • /
    • 1995
  • A strain BL-29, which produces a extracellular lytic enzyme on E. coli was isolated from the soil. The strain was identified as belonging to the genus Bacillus sp. The lytic enzyme was purified to homogeneity by ion exchange chromatography and gel filtration. Specific activity of the purified enzyme was 28, 850 U/mg protein and yield of the enzyme was 5$%$. The purified enzyme showed a single band on SDS-PAGE and its molecular weight was estimated to be 31, 000 by SDS-polyacrylamide gel electrophoresis and gel filtration column chromatography. The optimum temperature and pH were $55^{\circ}C$ and pH 10.0, respectively. The enzyme was stable at $45^{\circ}C$ but enzyme activity was reduced by up to 50$%$ when the temperature was raised to $55^{\circ}C$ for 15 min. Stable range of pH was from 5.0 to 11.0. but Enzyme activity was inhibited by lead-acetate, mercuric chloride, ethylene glycol-bis-[$\beta$-aminoethyl ether]-N, N, $N^1, $N^1$-tetraacetic acid (EGTA), and ethylenediamine tetraacetic acid (EDTA), but not affected considerably by treatment with other chemical reagents.

  • PDF

Characteristic Features of an ${\alpha}-Galactosidase$ from Penicillium purpurogenum

  • Park, Gwi-Gun;Lee, Sang-Young;Park, Boo-Kil;Ham, Seung-Shi;Lee, Jin-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.90-95
    • /
    • 1991
  • A ${\alpha}-galactosidase{\;}({\alpha}-D-galactoside$ galactohydrolase; EC 3.2.1.22) was purified from the culture filtrate of Penicillium purpurogenum by DEAE-cellulose column chromatography, gel filtration of Bio gel p-l00, and subsequent SP-Sephadex C-25 chromatography. The final preparation thus obtained showed a single band on polyacrylamide disc-gel and SDS-polyacrylamide gel electrophoresis. The molecular weight and isoelectric point were determined to be 63,000 and pH 4.0 by SDS-polyacrylamide gel electrophoresis and isoelectric focusing, respectively. The galactosidase exhibited maximum activity at pH 4.5 and $55^{\circ}C$, and was stable between pH 2 and 5, and also stable up to $40^{\circ}C$. The enzyme activity was not affected considerably by treatment with other metal compounds except mercuric chloride and silver nitrate. Copra galactomannan was finally hydrolyzed to galactose, mannose and mannobiose through the sequential actions of the purified galactosidase and mannanase from the same strain. The enzyme hydrolyzed melibiose and raffinose, but not lactose.

  • PDF

Purification and Characteristics of Chitosanase from Bacillus sp. HW-002

  • Lee , Hyean-Woo;Choi, Jong-Whan;Han, Dong-Pyou;Park, Myoung-Jin;Lee, No-Woon;Yi, Dong-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.19-25
    • /
    • 1996
  • Chitosanase from Bacillus sp. HW-002 was purified with CM-cellulose column chromatography, and HPLC with DEAE- TSK gel and YMC-pack Diol 120. The purified enzyme appeared as a single band on SDS-polyacrylamide gel. The molecular weight of the enzyme was estimated to be about 46 kDa on SDS-polyacrylamide gel, and was estimated to be about 23 kDa by GFC. The optimal pH of chitosanolytic activity was about pH 5.5-6.0, and the purified enzyme was most stable at pH 5.0. The optimal temperature of chitosanolytic activity was $65^{\circ}C$ and the enzyme was stable at $45^{\circ}C$ for 1 h. Chitosan was the most favorable substrate among various $\beta$-glucan. UVmax of the purified enzyme was 195 nmand was not noted around 280 nm. The main product of enzyme reaction with chitosan was chitobiose.

  • PDF

A Simple Method for Detection of Trypsin Inhibitors in Soybean (Glycine max) (대두 Trypsin Inhibitor의 간이검정법)

  • Jo, Ku-Hyung;Lee, Chun-Yung;Hong, Jong-Uek;Kim, In-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.339-344
    • /
    • 1986
  • The specific reaction of trypsin inhibitors with trypsin to form stable complexes was successfully applied for detection of trypsin inhibitors in soybean. Soybean extract was treated with $Ca^{++}$ to remove globulin fraction, followed by digestion with trypsin and fractionated by chromatography on Sephadex G-50. The void volume fraction contained the trypsin-trypsin inhibitor complexes as well as trypsin. The trypsin inhibitors were then detected by their molecular weight differences on SDS-polyacrylamide gel electrophoresis, in which the complexes dissociate into trypsin and its inhibitors. With the method proposed, trypsin inhibitors were indentified by their ability forming the stable complexes with trypsin and their anti-tryptic moiety. The formation of the complexes with trypsin was further confirmed by two dimensional electrophoresis and DEAE-Sephadex A-25 chromatography. Employing the proposed method, it was found that soybean (Glycine max cv. Hill) contained 7 trypsin inhibitors.

  • PDF

Effects of Homolactic Bacterial Inoculant Alone or Combined with an Anionic Surfactant on Fermentation, Aerobic Stability and In situ Ruminal Degradability of Barley Silage

  • Baah, J.;Addah, W.;Okine, E.K.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.369-378
    • /
    • 2011
  • The effect of a homolactic inoculant containing a blend of Lactobacillus plantarum, Pediococcus acidilactici and Enterococcus faecium or, the anionic surfactant, sodium dodecyl sulphate (SDS), alone or in combination on fermentation characteristics, aerobic stability and in situ DM, OM and NDF degradability of barley silage was investigated. Barley (Hordeum vulgare, L.) was harvested (45% DM), chopped and treated with water at 24 ml/kg forage (Control), inoculant at $1.09{\times}10^5$ cfu/g forage (I), SDS at 0.125% (wt/wt) of forage (S) or with the inoculant ($1.09{\times}10^5$ cfu/g) plus SDS (0.125% wt/wt; I+S). The treated forages were ensiled in triplicate mini silos and opened for chemical and microbiological analyses on d 1, 2, 3, 7, 14, 42 and 77. Silage samples from d 77 were opened and aerobically exposed for 7 d. The in situ rumen degradability characteristics of silage DM, OM and NDF were also determined. The terminal concentration of NDF in S and I+S was lower (p<0.001) than in other treatments. Lactate concentration was higher (p<0.001) and the rate and extent of pH decline were greater (p<0.001) in I and I+S than S and Control silages. A homolactic pathway of fermentation in I and I+S was evidenced by reduced (p<0.001) water-soluble carbohydrates concentration, higher lactate (p<0.01), lower acetate (p<0.01) and lower pH values (p<0.001) than in S and Control silages. All silages remained stable over 7 d of exposure to air as indicated by lower temperatures and moulds, and by non-detectable yeast populations. The treated silages had lower DM and OM degradability than in the Control but NDF degradation characteristics of I+S were improved compared to other treatments. It is concluded that the inoculant alone improved the fermentation characteristics whereas the combination of the inoculant with SDS improved both fermentation and NDF degradability of barley silage.

Purification and Characterization of Carboxymethyl Cellulase from Loweporus roseoalbus (Loweporus roseoalbus가 생산하는 Carboxymethyl Cellulase의 정제 및 특성)

  • Chang, Hyung-Soo;Kim, Jun-Ho;Yoo, Kwan-Hee
    • The Korean Journal of Mycology
    • /
    • v.33 no.2
    • /
    • pp.75-80
    • /
    • 2005
  • A carboxymethyl cellulase (CMCase) has been purified from Loweporus roseoalbus. The molecular weight of the purified CMCase was estimated to be 28.5 kDa by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. The maximum activity of the purified CMCase was observed at pH 4.0 and $30^{\circ}C$, and stable for pH 3 to 5 to maintain 60% activity. The CMCase activity was activated by SDS and inhibited by PMSF and 1,10-phenanthroline. The enzyme activity was also decreased by the addition of ethylene diamine tetraacetic acid (EDTA), suggesting that the purified CMCase is metalloenzyme.

The Effects of the Surfactant Type on the Nanofluids Stability (계면활성제 특성에 따른 나노입자 분산안정도 향상 연구)

  • Kang, Chi-Hoon;Hong, Sung-Wook;Kang, Yong-Tae;Koo, June-Mo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.275-280
    • /
    • 2008
  • The effects of the surfactant type, i.e., CTAB(cationic), SDS(anionic), and GA(polymeric), on the stability of 0.1 vol.% $Al_2O_3$ nanofluids were investigated. The changes in size and zeta potential of nanoparticles in nanofluids with pH, surfactant concentration, and time were experimentally observed. The nanofluids adding CTAB, which ionizes of the same charge with the bare particle surface, was found to have the best stability regardless of the surfactant concentration, whereas those with SDS became unstable under low surfactant concentration conditions, i.e. lower than the critical micellel concentration(CMC), before the charge reversal occurred. With higher SDS concentration over CMC, they became stable. Gum Arabic, which had been used often to stabilize the nanofluids, was also tested. In result, it was found that the type and concentration of surfactants to add should be selected considering pH and the sign of the bare particle surface charge.

  • PDF

Purification and Characterization of Internal Invertase in Rhodosporidum toruloides Mating Type a Cells

  • Jeong, Youn-Kee;Cho, Kyung-Soon;Lee, Tae-Ho;Ryu, Beung-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.250-254
    • /
    • 1997
  • The internal invertase of Rhodosporidium toruloids mating type a cells was purified to a single band on SDS-PAGE from cell-free extract by acid precipitation, ion exchange chromatogaphy andgel filtration. The determined molecular weight of he purified enzyme was about 95,000 by gel filtration and 100,000 daltons on SDS-polyacryamide gel electrophoresis. This enzyme didn't show any activity change by several metal ions except 15.4% decrease by {TEX}$Mn^{2+}${/TEX} and was strongly inhibited by 2-mercaptoethanol and SDS. The invertase maintained its activity at high level until 70℃, but inactivated at 80℃ almost completely. The optimal temperature and pH of the enzyme were about 60℃ and pH 5.0, respectively. The stable pH range of invertase was narrow from pH 3.0 to 6.0. The Km value and isoelectric point of enzyme were 3.4×{TEX}$10^{3}${/TEX} M, pH 4.4, respectively.

  • PDF

A Study of surfactant-based remediation for removal of toluene and PCE in contaminated water

  • Kim, Eun-Sik;Lee, Dal-Heui;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.302-305
    • /
    • 2003
  • The purpose of this study was to assess the effect of surfactant on the rate of NAPLs(non-aqueous phase liquids) solubilization. The experimental variables were surfactant type, NAPLs type and water type. The main experimental designs were consists of two phases. The solubilization rate is sensitive to surfactant type based on this test. Used aqueous surfactants were solubilized and removed 72.77 to 89.90% of toluene, PCE(tetrachloroethylene) from the contaminated water during the test, respectively. T60 has higher and stable recovery ratio than SDS in surfactant type but, the micelle of the T60 is more weaker than that of SDS based on this study's results. And the solubilization rate in used water type was almost same.(deionized water, surface water).

  • PDF

Purification and Properties of .$\beta$-1, 3-Glucanase from Pseudomonas stutzeri KF13 (Pseudomonas-stutzeri KF13의 ..$\beta$-1, 3-Glucanase 정제 및 성질)

  • 방광웅;송형익;김재근;유대식;정기택
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 1987
  • An extracellular $\beta$-1, 3-glucanase from Pseudomonas stutzeri KF 13 was purified about 390 with 26% recovery. The purified enzyme revealed a single band by polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis. The enzyme was stable in a pH 6.0 to 9.0, and relatively thermostable. The optimal pH and temperature on the enzyme activity were found to be 5.8 and 45.deg.C, respectively. The activation energy was calculated to be 16,130 cal per mole. The Km value for laminarin was found to be 3ng per ml and the molecular weight was determined to be 28,000 by gel filtration and 26,000 daltons by SDS-acrylamide gel electrophoresis. The enzyme was inhibited by 1.0mM of $Hg^{2+}$, and strongly inhibited by 1.0mM of p-chloromercuribenzoic acid.

  • PDF